Honeywell

5X80 Series

Software Development Kit (SDK) for 5080, 5180, and 5380
Decoded Miniature Image Scan Engines

User’s Guide

Download from Www.Somanuals.com. All Manuals Search And Download.

Disclaimer

Honeywell International Inc. (“HII”) reserves the right to make changes in specifications and other infor-
mation contained in this document without prior notice, and the reader should in all cases consult HIl to
determine whether any such changes have been made. The information in this publication does not rep-
resent a commitment on the part of HIl.

HIl shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or
consequential damages resulting from the furnishing, performance, or use of this material.

This document contains proprietary information that is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced, or translated into another language without
the prior written consent of Hll.

© 2007-2011 Honeywell International Inc. All rights reserved.

Other product names or marks mentioned in this document may be trademarks or registered trademarks
of other companies and are the property of their respective owners.

Web Address: www.honeywellaidc.com

Download from Www.Somanuals.com. All Manuals Search And Download.

http://www.honeywellaidc.com
http://dcd.welchallyn.com
http://www.honeywellaidc.com

Table of Contents

Chapter 1 - Introduction

Features of the 5X00 SEIEScccii ettt e e e e s e e e e e e e s snnreeeeeeeeeennnnnes
Target Operating Systems for the 5X00 SEreSccovccviiiiiiieei e
01 C=T g = (et DI T= Vo | =Tt o HO PP PPPPP T PPPPPPPRPPP
B5X00 SeES LIDrary FilES........uuuuuiuiiiiiiiiiiiiiiiieeeee ettt e et e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaaas
5X00 Series API Library SUMMATYccooiiiiiiiiieeieee e
Data Types, Structures, and Enumerated TYPES.....ccoeiiicuuieiiiieee e e e e e esriieeee e e e e e

Chapter 2 - API Function Descriptions

NP ACQUITEIMAGE ...ttt e e e e e e e e eeeeeeeeeas
hhpAcquirelntelligentimage
] 7oL 7= Voo =Y | o RSP
hhPCaptUrEBAarCOAEooiiiiiiiiiiiiii et e e e e e e e annes
hhpCaptureRawBarcodeoooo i
RNPCONNECT ... e e e e e e e e e s e e e e e ennneee s
(] o1 01 E= oo} o1 g =Y o PP
hhpEnableDisableSymbology ...
NhPENQGINECONNECIEA ...
NAPGETASYNCRESUIL ... e e e
NNPGEIEITOIMESSAGE ...ceiiiiiiiee ittt ettt e et e e s b e e e e s b e e e e nnneeas
hhPGEtLastiMageoooiiie e
hhPNaMEACONNECT ..o e
hhpRawAcquirelntelligentimage ...
hhpReadCoNnfigIEM ...
hhpReadCoNnfigSIreamooiiee e
hhpReadENGINEINTOoiiiiie e
hhpReadlmagerCapabilitiescooi i
hhpReadSymbologyCoONTigeeeiiiiiie e
hhpReadSymbologyRangeMaxMin ...
hhpSendACtioNCOMMEANGuiiiiiiie e e e e e e e e e e ennnees
NAPSENAMESSAJE ... e e e e e s e s b e e eeeeeeenannnes
hhPSEtASYNCIMELNOASeeeiiiiiiei e e e e e e e e e e e e eeeereeeeeeeeeeeees 2
hhpSetBarcodeDataCodePageoooouuiiiiiiiiiiiiiieeee e 2
hhpSetConfigltemMTODEfAUILScoooiiiiii e 2
hhpSetHardwareLineDIIFIIeName ... 2
hhpSetSymbologyDefaullsooi i 2
gl aT 18 oo [2=To (=T il g 117 U= 2
hhPWHIECONFIGIEM ..o 2
hhpWriteConfigStreamoooiiiii e 2
hhpWriteSymbologyCoNnfigeeeiiiiiiiiee e e 2
SYMDBOIOGY IAENTFIEIS .. 2

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3 - Enumerated Types and Definitions

(0] gl O o [PRRPR 3-1
Setup Type ENUMErAted TYPE...uueiei it e e e e e e e e e nnnes 3-2
Symbology ID ENUMEIAtioNoiiiiiie e 3-2
SUPPOrted OCR FONESeeiiiiiiiie et e e ee e 3-3
IMAGE FOMMALS....coiiiiii e s e e e e e e e e 3-3
Compression Mode FOrMALSuuviiiiiiiiieeeeeeeeeeeeeeeeeeee et 3-4
Capture lllumination DUtY CYCIEuiiiiiiieeee e 3-4
AULO EXPOSUIE TYPE ...eiieiieiiie ittt ettt e e e e e e e e e e e e e e n e e e e e e e e annnes 3-4
GaiN ValuUS ENUMoiiiiiiee ettt eeannnnes 3-4
Frame Rates ENUM.....coo oo 3-4
Beeper VoIUME ENUM... ...t 3-5
Decoder Mode ENUM ... 3-5
System (MPU) CIOCK SPEEASeviieiiiiiiiiiiiiee e e e e e e e 3-5
Configuration Structure Item Enum for hhpReadConfigltem() and hhpWriteConfigltem()3-5
Trigger MOdES ENUIMoooiiiiiii e e 3-6
SEAUENCE IMOUE. ...ttt e e e e e e s bbbt e e e e e e e s aanbeeeeeeeeeeanne 3-6
Serial Port Baud RaAtESooiiiiiiiiiie ettt 3-6
Baud Rates that Require USB Serial or SIO950 Compatible Serial Port Driver............ 3-6
Serial Data BilS.......ueeiiiiiee i e e e e e e e e e e e e e e e nnne 3-7
P aIEY e e e e e e e e e e e e e r e e e e e naaa 3-7
S (o 18 = 1 £ PSPPSR 3-7
(070] g1 aT=Yoi (o] g I 1Y/ o= TP PRPPPRPPPE 3-7
Decoder Symbology SUPPOM.......couuiiieiiiie et 3-8
HHP ACtION COMMEANGS......eeiiiieiiiiiiiiiiiee e e et e e e e e e e s e e e e e e e e s nnnnneeeeaaeeean 3-8
1@ 0 74@) 3 38 = o U o o OSSR 3-8
Beep EXECULE ENUM ... e e e 3-8
Imager TYPE ENUM ... 3-8
lllumination Color Enum (5X10/5X80 engines ONIY)cuuviiieiiiiiiiiiieeeee e 3-8

Chapter 4 - Structures and Mask Definitions

Symbology Structures and DefiNeScooii i 4-1
Imaging Structures and DefiNesoooiiiii i 4-6
Other Imager Configuration Structures and Definesc.cccoeiiiiieice e 4-9

Chapter 5 - OEM-Configurable SDK Functionality

OEM SUPPHEA DLL ...ttt e e e s s e e e e enr e e e e annneeeeas 5-1
ConfigureComMMPOIT ... e 5-1
IMagerPOWEIEADOWNooiiiiiiiiii e e e e e e e e e e e e e e e e e 5-1
ModifyCommPOMDCB ..o 5-1
SetCommDIVErHANAIEooooiiiiiie e 5-1
SEtHArAWArE T QOO .eeeiiiiiiiiieie et e e e e e e e e s aarr e e e e e e e e aannes 5-2
WaKEUPIMAGET ...ttt e e e e e e e e e e e e e e e e e annes 5-2

REISITY ENTHES ...t e e e e e e e e e e e e eeeeas 5-2
=0 o T, 5-2
FOrCEHMOAEM ... 5-2

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6 - Program Samples

Configuration Management

... 6-1

=T oTo o (=T 7= T o] 11] (= SRR 6-2

T g PoTe [0= T (U] = PSPPSR 6-5
Chapter 7 - Customer Support

Product Service and REPair.uii ittt 7-1

Online Product Service and Repair ASSIStANCEc.ueeiiiiiiiieiiiiie e 7-1

TECNICAl ASSISIANCEuuiiiiiiiiiiiiei ettt e et e e e et e e e e e e e eaaeaaaaaaaaaaaaaaaaaaaaaaaaaaeaeaees 7-2

Online TechniCal ASSISTANCE.........cuiiiiiiiiiiii i e e e 7-2

i

Download from Www.Somanuals.com. All Manuals Search And Download.

Download from Www.Somanuals.com. All Manuals Search And Download.

Introduction

The 5X10/5X80 Software Development Kit (5X00 Series) provides a set of libraries, tools, and sample source code to help soft-
ware developers create an interface between their host system and a Honeywell miniature image scan engine. The 5X00 Series
consists of:

e The API Definition and Documentation
e API Libraries
e Sample Code

Features of the 5X00 Series

e The 5X00 Series contains software libraries that interact with image/data capture engines using a documented API
(Application Programming Interface). The API functions are defined on a higher level so they can be easily understood and
integrated into your applications, so you don’t have to learn minute details of the engine interface protocol. You simply compile
your code with the library header files and link in the library for your platform. Afterward, all engine functionality is at your
disposal.

* The image/data capture engine is easily integrated into a variety of host platforms.

e The 5X00 Series captures images and returns them as unformatted data, or as one of the standard file formats (BMP, TIFF,
and JPG). Captured images can then be saved to disk and easily imported into a variety of common tools and applications.

* Asingle APl is used for all Honeywell decoding engines. The libraries for all engines are identical for a given host platform.
T_he:e zrgldifferent libraries for each platform, but the API interface is the same for all of them, so you only need to learn a
single .

* Libraries are available for the Microsoft® Windows® family of operating systems. This includes both the Windows® CE
operating system, Windows® 9x, and Windows NT® derivatives.

e Sample code is included that demonstrate how to use specific aspects of the 5X00 Series, as well as the buildable source
and executable code for a demo application.

* The communication driver library is separate from the main engine API library.

Target Operating Systems for the 5X00 Series

The 5X00 Series is designed for use with the following operating systems:

« Windows®CE versions WinCE 4.2, WinCE 5.0, Windows® Pocket PC 2000, and Pocket PC 2002 supporting the following
processors:

Pocket PC 2000ARM, MIPS, SH3

PocketPC 2002ARM

PocketPC 2003ARMV4

CE.Net Standard SDK ARMV4, ARMV4l, ARMV4T, SH3, SH4, X86

« Windows® 9x, Windows NT® 4.0, Windows® 2000 and Windows® XP

Download from Www.Somanuals.com. All Manuals Search And Download.

Interface Diagram

The following diagram shows the interface between the 5X00 Series and the Image Engine:

‘ User Application

'

‘ SDK Driver Interface Layer - hhpimgrSdk.dll ‘

A
\

‘ SDK API Interface Layer - commDrv.dll l
A

‘ 0OS Communications Driver

VAVAN ‘ Physical Connection: RS-232, USB, etc.

v

‘ Image Engine |

5X00 Series Library Files

The SDK APl and SDK communications layers are provided in the dynamic link libraries, hhplmgrSdk.dil and commDrv.dll,
respectively. The library link file hhplmgrSdk.lib and the include files hhplmgrSdk.h, hhpSymCfg.h and hhpimgrCfg.h are also
provided. In order to use the 5X00 Series, you must include hhplmgrSdk.h in any source files that call the SDK functions. The
library include files must be in the include path for the application’s project. This means that the files must either be in the
source file build directory, or in the developer’s Studio include path. Also, the library link file, hhplmgrSdk.lib, must be added to
the application project link list and link path. Since the .dll and .lib files are operating system and processor type dependent,
care must be taken to use the proper files for the chosen target environment.

SDK Librar . .
. V' | Where Resides | Function
File
Target Device Sends commands from API to the appropriate OS driver. Handles low level
commDrv.dll . L
Windows Folder communications protocols.
Target Device Contains the exported SDK API. Formats requests into imager commands,
hhpimgrSdk.dll .
Windows Folder then calls commDrv layer.
hhplmgrSdk lib Project Link Path Library exports file. Allows your application to link without actually including

the SDK code at link time.

Definitions, structures, and enumerated types related to symbology setup.
Automatically included when hhplmgrSdk.h is included.

Definitions, structures, and enumerated types for imaging as well as all
hhplmgrCfg.h Project Include Path other imager configurations, except communications. Automatically
included when hhplmgrSdk.h is included.

Include file that must be included in application code. Contains definitions,
hhplmgrSdk.h Project Include Path structures, and enumerated types for communication configuration, as well
as the SDK error codes and SDK function API prototypes.

Only necessary if you create a helper dll for the SDK to provide access to
the imager hardware sleep and trigger lines.

hhpSymCfg.h Project Include Path

OemDIl.h Project Include Path

Download from Www.Somanuals.com. All Manuals Search And Download.

5X00 Series API Library Summary

The following is a summary of the API functions. The full description of each function is found on the page noted.
Core Functions

Core Function Summary Page
Error Management Function
hhpGetErrorMessage ‘ Returns a descriptive text string for the specified SDK error code. 2-4

Connection Functions
These functions open, close, and verify a connection to an imager.

hhpConnect Estabhs_hes anq initializes a connection to the imager at the specified port and 0.3
connection settings.

hhpDisconnect Closes down the open imager connection. 2-3

hhpEngineConnected Checks if the connection to the imager is valid. 24

hhpNamedConnect Establishes and |n|_t|aI|zes_a connection to the imager at the specified driver o5
name and connection settings.

Asynchronous Notification and Control Functions

Image and barcode capture can be either blocking (synchronous) or non-blocking (asynchronous).

In blocking (synchronous) mode, the SDK function call does not return until the barcode or image is received, the request times
out, or an error occurs. In non-blocking (asynchronous) mode, the capture call returns immediately. Your application is notified
of the completion when either a barcode or an image was received, the time-out for the call was reached, or an error was detected.
You can specify which notification methods you wish to receive.

Your application can subscribe to one or more of the following notification methods: Windows Event, Windows Message, and/or
Callback Function. When notification is received, your application can call hhpGetAsyncResult (see page 2-4) to retrieve the
return code as well as the image, barcode, or text data. The asynchronous interface is also the manor in which imager-initiated
barcode capture data, such as from a hardware trigger, is returned.

There is also a cancel function (see hhpCancello on page 2-2) that allows you to cancel any ongoing operation. You should be
aware that when the callback function method is used, any processing done during the callback is run within the context of the
SDK’s asynchronous read thread. This means that the SDK is unable to receive images or barcodes until the callback returns.

hhpCancello Cancels any synchronous or asynchronous I/O in process. 1-3

hhpGetAsyncResult Retrieves the results (image/barcode, etc.) of an asynchronous 0.4
I/0 event.

hhpSetAsyncMethods Allows the application to select how it wishes to be notified on completion of 210
an asynchronous I/O event.

Imaging and General Configuration Functions

The imaging and configuration functions provide a simplified API for modifying the imager setup, image/barcode capture
configuration, and symbology configuration. In order to limit the number of functions a developer must master, the design
philosophy is to allow configuration control using only a small number of setup functions. The imager configuration is broken down
into functional groups with structures containing the configurable items for each. Individual configuration items are specified within
structures by use of a bit field mask. In this way, single configuration items can be read or written using minimal communication
traffic. There are functions for reading and writing parts or all of the HHP_CONFIG imager configuration structure as well as
writing the setup/configuration for individual symbologies. If the specified symbology is not available in the imager’s version of
the symbol decoder, (e.g., Data Matrix in a linear and PDF417 decoder), the symbology functions return
RESULT_ERR_UNSUPPORTED. Finally, to facilitate easy configuration management from device to device and application to
application, the 5X00 Series also provides methods for retrieving and setting the whole imager configuration as a single stream
so it can be saved to disk and restored at a later time.

hhpReadConfigitem Betrleves a single configuration group or whole imager configuration from the 0.6
imager.
hhpReadConfigStream Retrieves the current wholle imager configuration as a single buffer. This 0.7
buffer can be saved to a file and later restored.
1-3

Download from Www.Somanuals.com. All Manuals Search And Download.

Core Functions (Continued)

Core Function Summary Page

hhpReadimagerCapabilities Retr!eves the imager settings (fixed) for image size, image bit depth, and 0.8
maximum message length.

hhpReadEnginelnfo Reads information about the image engine contained in the image engine 0.8
PSOC.

hhpSetConfigitemToDefaults saeltusez selected symbology, or all symbology configurations, to their default 210
Writes some or all of the configuration items for a single configuration group or

hhpWriteConfigltem for all configuration groups, with the exception of version and communication 2-12
groups.

.) Writes an entire data stream of programmable parameters from a previous)
hhpWriteConfigStream call to hhpReadConfigStream. 213
Symbology Configuration Functions
These functions allow you to read and set the symbology configurations.
hhpEnableDisableSymbology Enables or disables a single symbology, or all symbologies. 2-3
hhpReadSymbologyConfig Retrieves the current or default_ symbology configuration for a specified 0.8

symbology, or for all symbologies.
hhpReadSymbologyRangeMaxMin | Returns the specified symbology range maximum and minimum values. 2-9
hhpSetSymbologyDefaults Defaults a single symbology, or all symbologies. 2-11
hhpWriteSymbologyConfig X\ér;:zs some or all of a single symbology, or all symbologies’ configuration 214

Barcode Capture Functions

The 5X00 Series captures barcodes from imagers that have hardware triggers or some other non-SDK initiated barcode captures
without having to poll the imager to see if there is any data to read. This allows the imager to be put into low power mode without
having to wake up to answer the polling message.

All barcode result strings are returned in TCHAR arrays, which, if running on a WinCE device or if using a Unicode Desktop build,
are 2 bytes per character. You can specify a Unicode code page other than the default ANSI code page (CP_ACP).

Initiates a synchronous (wait for finish before returning from call) or
hhpCaptureBarcode asynchronous (return immediately) barcode capture. Decoded data returned 2-2
is translated by code page and locale.

Specifies the code page used to convert the barcode characters to Windows

text. The default is the ANSI code page. 2-10

hhpSetBarcodeDataCodePage

Initiates a synchronous (wait for finish before returning from call) or
hhpCaptureRawBarcode asynchronous (return immediately) barcode capture. Decoded data returned 2-2
is unmodified 8 bit (ASCII) data.

Image Capture Functions

The image capture functions provide both synchronous and asynchronous operation.

A synchronous capture is specified by setting the bWait parameter of hhpAcquirelmage or hhpGetlLastimage to TRUE. For
synchronous operation, the function will not return until an image has been captured and transferred (hhpAcquirelmage), just
transferred (hhpGetLastimage), or an error has occurred.

Asynchronous captures are specified by setting bWait to FALSE. The function call returns immediately and the caller is notified
on request completion as long as at least one of the event notification methods has been enabled. You can receive transfer
progress updates by Windows messages or by providing a pointer to a DWORD. Both hhpAcquirelmage and hhpGetLastimage
allow the caller to override the current imager transfer configuration in the imager.

Initiates a synchronous (wait for finish before returning from call) or
hhpAcquirelmage asynchronous (return immediately) image capture. The image acquisition and 2-1
transfer parameters can also be specified.

Download from Www.Somanuals.com. All Manuals Search And Download.

Core Functions (Continued)

Core Function Summary Page
Initiates transfer of the last image captured. (This includes images captured

hhpGetlLastimage during barcode scan.) The call can be made synchronously or 2-4
asynchronously, and the transfer parameters can be specified.

Intelligent Imaging (Signature Capture) Functions

Intelligent imaging is barcode capture combined with an image window capture. The image window is cut from the same image
used to capture a barcode. This is how the SDK provides the ability to capture a signature associated with a barcode. In fact, a
successful barcode capture is required before the intelligent image window is sent by the imager. You can specify whether the
image is returned grayscale or black and white.

hhpAcquirelntelligentimage Barcode capture combined with an image window capture. 2-1

hhpRawAcquirelntelligentimage Captures portion of the image in which a barcode is decoded. 2-5

Miscellaneous Functions

Turns on illumination LEDs, Aimers, (and sound beeper for imagers that have

hhpSendActionCommand one) outside the image or barcode capture. 29
hhpSendMessage Sends menu commands to the imager. 2-9
hhpUpgradeFirmware Upgrades the current imager firmware with a new firmware file. 2-11
Allows you to specify the name of an OEM dll file. This file can contain some
hhpSetHardwareLineDIIFileName or all of the OemDll exports that provide support for hardware trigger and low 2-11

power mode hardware lines.

Data Types, Structures, and Enumerated Types

The 5X00 Series API uses structures (see Structures and Mask Definitions beginning on page 4-1) and enumerated types (see
Enumerated Types and Definitions beginning on page 3-1) extensively . The definitions are in the include files in the 5X00
Series package. All 5X00 Series-specific structures have a dwStructSize member that must be set to sizeof(struct name).
This insures that the structure being passed to a given function is the structure type expected by the function and, if writing is
done to the structure, that the structure size boundary is not exceeded. Furthermore, all imager configuration structures (except
the all inclusive structure HHP_CONFIG) have a DWORD member dwMask. The mask allows you to specify only certain mem-
bers within a structure. Set the mask value by ORing together the appropriate masks for the given structure for the particular
items within the structure that should be read/written. Samples of programs that demonstrate this can be found in Program

Samples beginning on page 6-1. This technique is also used by Microsoft® in their Windows® SDK (for example, see Win-
dows® SDK structure CHARFORMAT).

The following Windows® data types are included for clarity.
Note: A “P” in front of a data type means a pointer to the type.

Windows Data Types

BOOL 32 bit signed integer used by most Microsoft SDK functions in place of a true Boolean.

BYTE 8 bit unsigned variable.

DWORD 32 bit unsigned integer variable.

HANDLE A Windows WIN32 handle type. Returned from opening files, creating events, semaphores, or
mutexes.

HWND A Windows handle to an application window.

PVOID 32 bit unsigned integer that points to void data type (generic pointer).

TCHAR OS-dependent character variable. 16 bit for Unicode systems, otherwise 8 bits.

WORD 16 bit unsigned integer variable.

Download from Www.Somanuals.com. All Manuals Search And Download.

Windows Data Types (Continued)

HHP_EVENT_CALLBACK

Pointer to a callback function (see hhplmgrSdk.h) called in response to the completion of an
asynchronous 5X00 Series function call or event. (See example on page 6-4.)

SDK Enumerated Types

Beep Options

Enumeration (not an enumerated type) that can be used with an hhpSendActionCommand.

Compression_t

Enumerated type for specifying the form of compression (if any) to use when transferring an
image from the imager to the SDK. See Compression Mode Formats on page 3-4.

Configltems_t

Enumerated type to specify that the configuration structure is being sent to the Read/Write
config item functions.

DECODE_METHOD

Enumerated type of decode methods available to decode symbols.

DECODER_TYPE

Enumeration of types of decoders and, by extension, what symbologies can be decoded.

EngineType_t

Describes the connection, the imager, and the type of engine.

FileFormat_t

Enumerated type for specifying the format of the data returned in the HHP_IMAGE structure.

HP_ACTION

Enumerated type whose items describe which imager command functionality (beeper, aimers,
lights) is to be acted upon.

HHP_AIMER_MODES

Enumerated type to specify the aimer mode.

HHP_AUTOEXPOSURE

Enumerated type to specify whether the imager tries to auto adjust the image exposure and, if
so, how.

HHP_BAUD_RATE

Enumerated type of the supported baud rates for serial devices.
Note: A special driver is required if a baud rate greater than 115200 is selected.

HHP_BEEPER_VOLUME

Enumerated type to select the imager beeper volume when sounding the beeper. This structure
is ignored for products that do not have a beeper.

HHP_CONNECT_TYPE

Enumerated type used in hhpConnect to specify the connection type and connection port where
the imager is connected.

HHP_DATA_BITS

Enumerated type for number of serial data bits.

HHP_DUTY_CYCLE

Enumerated type to specify the behavior of the illumination and aimer LEDs during image
capture.

HHP_EVENT_TYPE

Enumerated type that describes the type of asynchronous event being reported.

HHP_FRAME_RATE

Enumerated type to select the image capture frame rate. Only valid when no auto exposure is
selected.

HHP_GAIN

Enumerated type to select the image capture gain. This type is only valid when no auto
exposure is selected.

HHP_PARITY

Enumerated type for serial parity.

HHP_SEQ_MODES

Enumerated type to specify the sequence acquisition mode.

HHP_STOP_BITS

Enumerated type for number of serial stop bits.

HHP_SYS_SPEED

Enumerated type to specify the rate (in Mhz) at which all components other than the CPU are
to be clocked.

HHP_TRIG_MODES

Enumerated type to specify the trigger mode.

OCRDirection_t

Enumerated type for setting the text direction for OCR decoding.

OCRMode_t Enumerated type for setting the font for OCR symbology decoding.
On Off Enumeration (not an enumerated type) that can be used with hhpSendActionCommand.
Result t Enumerates the function result codes returned by the SDK functions. See Error Codes on page

3-1.

SetupType_t

Enumerated type for specifying whether a read configuration item call should return the current
settings or the imager default setting.

Symbology ID enumeration

Enumerates all the available symbologies supported in the imager decoder. Non-data type
used in the symbology configuration functions.

Download from Www.Somanuals.com. All Manuals Search And Download.

SDK Structure Types

A full description of the SDK structure types can be found in Enumerated Types and Definitions beginning on page 3-1.

Note:

Important: Make sure to set the structure members dwStructSize and dwMask.

Individual Symbology Structures

All symbologies, except OCR, use either SymFlagsOnly_t or SymFlagsRange_t for configuration. There is a define for each
symbology (except OCR) that points to one of these two structures.

SymFlagsOnly_t

Structure for symbologies that don’t have minimum and maximum data lengths.

SymFlagsRange_t

Structure for symbologies that have minimum and maximum data lengths.

SymCodeOCR_t or OCR_T

Structure to configure OCR symbology.

Configuration Structures

HHP_BEEPER

Configures whether the beeper sounds on power up, decode, or command processing.
This is ignored if the imager does not have a beeper.

HHP_CONFIG

Super structure whose members are all the other configuration structures.

HHP_DECODE_MSG

Returns decoded, code page and locale-translated data output from the SDK.

HHP_DECODER_CONFIG

Configures decoding behavior other than symbology setup.

HHP_ENGINE_INFO

Structure used by the hhpReadEnginelnfo (page 2-8) call that returns information about
the image engine. (5X80 engines with PSOC only.)

HHP_IMAGE

Returns image data from the SDK. It also specifies the format in which the image data is
returned.

HHP_IMAGE_ACQUISITION

Specifies how images are captured by the imager. This includes gain, exposure, frame
rates, and illumination.

HHP_IMAGE_TRANSFER

Specifies how images are shipped from the imager to the SDK. This includes image
processing items such as cropping, subsampling, histogram stretching, and transfer
compression.

HHP_IMAGER_CAPS

Retrieves the fixed characteristics of the imager: full image size, capture bits per pixel, and
maximum text/barcode message size (sent from imager). Structure in which
hhpReadlmagerCapabilities returns requested capabilities information.

HHP_INTEL_IMG

Specifies the location and size of the image returned as part of an intelligent image
capture. The location information is specified in minimum bar widths of the barcode
portion of the intelligent image.

HHP_POWER_SETTINGS

Configures the power management options of the imager.

HHP_RAW_DECODE_MSG

Returns raw (8 bit ASCII) decoded data output from the SDK.

HHP_SERIAL_PORT_CONFIG

Specifies serial port configuration for serial imagers.

HHP_SEQUENCE

Specifies how the sequence acquisition mode is configured.

HHP_SYM_CONFIG

Contains a list of all the structures for all the symbologies.

HHP_TEXT_MSG

Returns non-decoded data output from the SDK. The data is translated by code page and
locale.

HHP_TRIGGER

Configures the trigger mode of the imager.

HHP_VERSION_INFO

Queries imager and SDK software revisions.

Download from Www.Somanuals.com. All Manuals Search And Download.

Download from Www.Somanuals.com. All Manuals Search And Download.

2

API Function Descriptions

The following is an alphabetic listing of each API function with its complete description and a prototype for each function. All API
functions (with the exception of hhpEngineConnected (page 2-4) return a result code of type Result_t. See Error Codes on page
3-1 for the result code values.

hhpAcquirelmage

This function causes the imager to capture an image and transfer it to the host. Values to be used from the structures are
specified by setting the appropriate bit mask for each item in the structure’s mask member.

hhpAcquirelmage(

PHHP_IMAGE pimg,

PHHP_IMAGE_TRANSFER plmgTrans,

PHHP_IMAGE_ACQUISITION plmgAcqu,

BOOL bWait

)

Parameter Description

plmg Pointer to an HHP_IMAGE structure if bWait is TRUE. If bWait is FALSE, the parameter
is ignored and should be NULL.

plmgTrans Optional pointer to an HHP_IMAGE_TRANSFER structure. This structure overrides (just

for this call) the current imager configuration, and specifies the pixel subsample, cropping
rectangle, transfer compression type, compression factor (for JPEG lossy transfer), and
progress notification method. If this parameter is NULL, the current imager configuration
settings are used except for the progress notification methods that must be specified for
each call if notification is desired.

plmgAcqu Optional pointer to an HHP_IMAGE_ACQUISITION structure. This structure overrides
(just for this call) the current imager configuration, to specify and configure the image
capture method (type of autoexposure control or manual mode). If this parameter is NULL,
the current imager configuration settings are used.

bWait If TRUE, do not return until the image is received or an error occurs. If FALSE, return
immediately. One of the event notification methods must be enabled to receive notification
on completion. (See hhpSetAsyncMethods on page 2-10.)

hhpAcquirelntelligentimage

The location of the window of interest must be provided in units of minimum barcode widths. This allows the imager to grab the
same physical window, no matter how far the imager is from the page. The resultant image window is always squared with the
X and Y axis of the returned image, so even if the barcode page is rotated relative to the imager, the resultant image appears
square to the image edges.

There is only one intelligent image call that supports both synchronous and asynchronous capture. If synchronous capture is
used, all members of this structure must be valid. If asynchronous capture is used, you will receive
HHP_INTELIMG_BARCODE_EVENT for the barcode data, and HHP_INTELIMG_IMAGE_EVENT for the image data. The
barcode data is returned in a normal barcode structure (HHP_DECODE_MSG), while the intelligent image data is returned in an
HPP_IMAGE structure.

Note: Since the HHP_INTEL_IMG structure requires that image offsets and size be specified in barcode units, the
HHP_INTEL_IMG structure has a size member that allows you to specify (in pixels) the maximum allowable width and
height for the returned image.

hhpAcquirelntelligentimage(
PHHP_INTEL_IMG pintelimg,
PHHP_DECODE_MSG pDecodeMsg,
DWORD dwTimeout,

PHHP_IMAGE pimg,

BOOL bWait

)

Download from Www.Somanuals.com. All Manuals Search And Download.

Parameter Description

pintellmg Pointer to an HHP_INTEL_IMG structure that contains the setup parameters describing
the location of the intelligent image relative to the barcode.

pDecodeMsg Pointer to an HHP_DECODE_MSG structure if bWait is TRUE. If bWait is FALSE, the

parameter is ignored and should be NULL. The intelligent image barcode information is
returned here.

dwTimeout Maximum time (in milliseconds) to attempt to decode before declaring a no decode.

pimg Pointer to an HHP_IMAGE structure if bWait is TRUE. If bWait is FALSE, the parameter
is ignored and should be NULL.

bWait If TRUE, do not return until the image is received or an error occurs. If FALSE, return

immediately. One of the event notification methods must be enabled to receive notification
on completion. (See hhpSetAsyncMethods on page 2-10.)

hhpCancello

Cancels the current barcode or image capture.

hhpCancello(
void

)

hhpCaptureBarcode

This function causes the imager to capture images and attempt to decode them. Decoded data returned is translated by code
page and locale. Barcode capture can be synchronous or asynchronous. Synchronous capture is specified by setting the bWait
parameter hhpCaptureBarcode to TRUE. In this case, the function will not return until a barcode is read, an error occurs, or the
decode timeout is reached. Asynchronous capture is specified by setting the bWait parameter hhpCaptureBarcode to FALSE,
or whenever a barcode capture is initiated other than by the 5X00 Series (e.g., from a hardware trigger). In order to be notified
of an asynchronous transfer, you must enable at least one of the notification methods (see hhpSetAsyncMethods on page 2-10).

hhpCaptureBarcode(

PHHP_DECODE_MSG pDecodeMsg,

DWORD dwTimeout,

BOOL bWait

)

Parameter Description

pDecodeMsg Pointer to an HHP_DECODE_MSG structure if bWait is TRUE.

If bWait is FALSE, the parameter is ignored and should be NULL. (HHP_DECODE_MSG
will be passed to hhpGetAsyncMethods() call instead.) The function returns immediately,
and you are notified when symbols are decoded, an error occurs, or decoding times out
(no barcode) using the specified event notification method(s).

dwTimeout Maximum time (in milliseconds) to attempt to decode before declaring a no decode. A
value of CURRENT_DECODE_TIMEOUT specifies that the timeout is whatever is
currently set on the imager. A value of 0 indicates no timeout.

bWait If TRUE, wait for capture to complete before returning. If FALSE, one of the event
notification methods must be enabled to receive notification upon completion.

hhpCaptureRawBarcode

This function causes the imager to capture images and attempt to decode them. Decoded data returned is unmodified 8 bit ASCII
data. Barcode capture can be synchronous or asynchronous. Synchronous capture is specified by setting the bWait parameter
hhpCaptureRawBarcode to TRUE. In this case, the function will not return until a barcode is read, an error occurs, or the decode
timeout is reached. Asynchronous capture is specified by setting the bWait parameter hhpCaptureRawBarcode to FALSE, or

whenever a barcode capture is initiated other than by the 5X00 Series (e.g., from a hardware trigger). In order to be notified of
an asynchronous transfer, you must enable at least one of the notification methods (see hhpSetAsyncMethods on page 2-10).

Download from Www.Somanuals.com. All Manuals Search And Download.

hhpCaptureBarcode(

PHHP_RAW_DECODE_MSG pDecodeMsg,

DWORD dwTimeout,
BOOL bWait

)

Parameter
pDecodeMsg

dwTimeout

bWait

hhpConnect

Description

Pointer to an HHP_RAW_DECODE_MSG structure if bWait is TRUE.

If bWait is FALSE, the parameter is ignored and should be NULL. (HHP_DECODE_MSG
will be passed to hhpGetAsyncMethods() call instead.) The function returns immediately,
and you are notified when symbols are decoded, an error occurs, or decoding times out
(no barcode) using the specified event notification method(s).

Maximum time (in milliseconds) to attempt to decode before declaring a no decode. A
value of CURRENT_DECODE_TIMEOQOUT specifies that the timeout is whatever is
currently set on the imager. A value of 0 indicates no timeout.

If TRUE, wait for capture to complete before returning. If FALSE, one of the event
notification methods must be enabled to receive notification upon completion.

This function opens a connection to an imager. The connection must be closed by calling hhpDisconnect(). The caller can verify
that the imager is connected by calling hhpEngineConnected().

Opens the selected communications port and establishes connection with the imager and starts the read data thread.

hhpConnect(

HHP_CONNECT_TYPE connectType,

PVOID pStruct
)

Parameter
connectType

pStruct

hhpDisconnect

Description

Describes the type of connection and hardware port, e.g., HHP_COM1, HHP_COM2,
HHP_COMS.

An optional structure that contains setup information for the hardware port, or NULL.
PHHP_SERIAL_PORT_CONFIG is used to configure a serial port connection.

Closes the communications port and stops the read data thread.

hhpDisconnect(
void

)

hhpEnableDisableSymbology

Enables/disables an individual symbology or all symbologies.
hhpEnableDisableSymbology(

int nSymid,
BOOL bEnable
)

Parameter
nSymld

bEnable

Description

One of the symbology enumerated types, e.g., SYM_CODE39, SYM_OCR, or SYM_ALL
to enable/disable all symbologies.

TRUE to enable symbology, FALSE to disable symbology.

Download from Www.Somanuals.com. All Manuals Search And Download.

hhpEngineConnected

This function determines whether the imager is connected. This function checks to to see if the imager has lost power (due to
the host going into a suspended state), or if the imager has been removed.

hhpEngineConnected(

void

)

hhpGetAsyncResult

Retrieves the data from the last signal event (image/barcode capture). This function can be called with pResultStruct set to NULL
to obtain the event type. This is useful when the notification method is a Windows event.

Result_t hhpGetAsyncResult(

hhpEventType_t *pEventType,

PVOID pResultStruct

)

Parameter Description

hEventType Type of data causing the event notification. The valid values are:
HHP_BARCODE_EVENT
HHP_IMAGE_EVENT
HHP_TEXT_ MSG_EVENT
HHP_INTELIMG_BARCODE_EVENT
HHP_INTELIMG_IMAGE_EVENT

pResultStruct An HHP_DECODE_MSG, HHP_IMAGE, or HHP_TEXT_MSG structure pointer,
depending on the value of hEventType. This parameter can be NULL if just the event type
is desired. This is of use when the Event Handle notification is used.

hhpGetErrorMessage

This function returns a text message describing the meaning of a Result_t error code. See Error Codes on page 3-1 for complete
descriptions.

hhpGetErrorMessage(

Result_t nErrorCode,

PTCHAR ptcErrorMsg,

int nMaxChars

)

Parameter Description

nErrorCode Error code returned from one of the other 5X00 Series functions.

ptcErrMsg TCHAR buffer to hold error message string.

nMaxChars Maximum number of characters that can fit in ptcErrorMsg including NULL.
hhpGetLastimage

This function causes the imager to transfer the last image captured to the host. If bWait is TRUE, the function will not return until
the image is fully received or an error occurs. If bWait is FALSE, the function returns immediately and you are notified when
image transfer has completed or an error has occurred. plmgTrans is an optional parameter and can be NULL. Setting the
appropriate bit mask for each item specifies active members of this structure. This function can be used to obtain the image from
the last barcode capture attempt as well as the last image from an image capture attempt.

hhpGetLastimage(

PHHP_IMAGE pimg,
PHHP_IMAGE_TRANSFER plmgTrans,
BOOL bWait

)

Download from Www.Somanuals.com. All Manuals Search And Download.

Parameter Description

pimg Pointer to an HHP_IMAGE structure if bWait is TRUE. If bWait is FALSE, the parameter
is ignored and should be NULL.

plmgTrans Optional pointer to an HHP_IMAGE_TRANSFER structure. This structure overrides (just

for this call) the current imager configuration, and specifies the pixel subsample, cropping
rectangle, transfer compression type, compression factor (for JPEG lossy transfer), and
progress notification method. If this parameter is NULL, the current imager configuration
settings are used except for the progress notification methods that must be specified for
each call if notification is desired.

bWait If TRUE, do not return until the image is received or an error occurs. If FALSE, return
immediately. One of the event notification methods must be enabled to receive notification
on completion.

hhpNamedConnect

This function opens a connection to an imager. The connection must be closed by calling hhpDisconnect (page 2-3). The caller
can verify that the imager is connected by calling hhpEngineConnected (page 2-4).

hhpNamedConnect(

PTCHAR ptcConnectName,

PVOID pStruct

)

Parameter Description
ptcConnectName The name of driver for the hardware port, e.g., "COM1:" or "\.\COM12."
pStruct An optional structure that contains setup information for the hardware port, or NULL.

HHP_SERIAL_PORT_CONFIG is used to configure a serial port connection.

hhpRawAcquirelntelligentimage

Captures a portion of the image in which a barcode is decoded. The position of the image is specified relative to the center of
the barcode. This function differs from hhpAcquirelntelligentimage (page 2-1) in that the barcode data is returned as a raw
(untranslated) byte data array.

Note: Since the HHP_INTEL_IMG structure requires that image offsets and size be specified in barcode units, the
HHP_INTEL_IMG structure has a size member that allows you to specify (in pixels) the maximum allowable width and
height for the returned image.

hhpRawAcquirelntelligentimage(
PHHP_INTEL_IMG plntellmg,
PHHP_RAW_DECODE_MSG pRawDecodeMsg,

DWORD dwTimeout,

PHHP_IMAGE plmg,

BOOL bWait

)

Parameter Description

pintelimg Pointer to an HHP_INTEL_IMG structure that contains the setup parameters describing
the location of the intelligent image relative to the barcode.

pRawDecodeMsg Pointer to an HHP_RAW_DECODE_MSG structure if bWait is TRUE. If bWait is FALSE,
the parameter is ignored and should be NULL. The intelligent barcode raw data
(untranslated) is returned here.

dwTimeout Maximum time (in milliseconds) to attempt to decode before declaring a no decode.

plmg Pointer to an HHP_IMAGE structure if bWait is TRUE. If FALSE, the parameter is ignored
and should be NULL.

bWait If TRUE, do not return until the image is received, the decode timeout is reached, or an

error occurs. If FALSE, return immediately. One of the event notification methods must
be enabled to receive notification of completion (see hhpSetAsyncMethods on page 2-10).

2-5

Download from Www.Somanuals.com. All Manuals Search And Download.

hhpReadConfigltem

Reads the configuration items for one or all of the configuration structures found in the main 5X00 Series configuration structure
HHP_CONFIG.

hhpReadConfigltem(

SetupType_t cfgType,

Configltems_t item,

PVOID pStruct

)

Download from Www.Somanuals.com. All Manuals Search And Download.

Parameter
cfgType

item

pStruct

hhpReadConfigStream

Description

Use SETUP_TYPE_CURRENT for the current settings, or SETUP_TYPE_DEFAULT for

the customer default settings.

One of the members of the enumerated type Configltems_t. The valid values are:

BEEPER_CONFIG Returns beeper control settings for devices with audible
beepers. The settings include volume, beep on decode,
and beep on reset.

TRIGGER_CONFIG Returns values for all trigger timeouts and current
trigger mode.
DECODER_CONFIG Returns the decoder setup. This includes single

decode, multiple decodes, print weight, centered
decode, and aimer.

POWER_CONFIG Contains low power configuration settings: trigger
mode, low power timeout, low power imaging, LED
brightness, aimer LED settings, and system clock

speed.

VERSION_INFO Returns the SDK, imager firmware, and imager boot
code versions.

SYMBOLOGY_CONFIG Returns the enable and setup parameters for all

symbologies. Individual symbologies can be read by
calling hhpReadSymbologyConfig.

SERIAL_PORT_CONFIG If using a serial connection imager, this returns the
serial port setup parameters of the imager.
IMAGE_ACQUISITION Returns the current imager settings for capture mode,

manual exposure, manual gain, manual frame rate,
target white value, target window, aimer and
illumination duty cycle, and triggering mode (hardware
trigger dependent).

IMAGE_TRANSFER Returns the current image transfer protocols, such as
cropping window, pixel subsample, and transfer
compression.

SEQUENCE_CONFIG Returns the sequence mode enable/disable state and
the data sequence command string.

ALL_CONFIG All of the above except serial port config.

Pointer to the appropriate structure based on parameter “item:”

HHP_BEEPER

HHP_TRIGGER

HHP_DECODER_CONFIG
HHP_POWER_SETTINGS
HHP_VERSION_INFO
HHP_SYM_CONFIG
HHP_SERIAL_PORT_CONFIG
HP_IMAGE_ACQUISITION
HHP_IMAGE_TRANSFER
HHP_SEQUENCE
HHP_CONFIG

Reads the full imager configuration as a single stream of data into a buffer. The buffer contains all the configuration items in an
ASCII stream so that it can be written to a disk for storage. No interpretation is done on the data stream, therefore, the data
stream contains both read only, and read/write data.

Download from Www.Somanuals.com. All Manuals Search And Download.

hhpReadConfigStream(
PBYTE puchCfgStream,
int nMaxLen,

PINT pnBytesReturned

)

Parameter Description

puchCfgStream Buffer to hold the raw imager configuration stream.

nMaxLen Maximum number of bytes that fit in buffer puchCfgStream.

pnBytesReturned Pointer to an integer where the number of bytes returned in puchCfgStream is placed.
hhpReadEnginelnfo

Reads information about the image engine contained in the image engine PSOC. This call is only valid for imagers that have a
PSOC. If the attached imager is not an 5X80 image engine, or the engine does not have a PSOC, the function returns the error
code RESULT_ERR_UNSUPPORTED.

hhpReadEnginelnfo(

PHHP_ENGINE_INFO pEnglnfo

)

Parameter Description
pEnglinfo Pointer to an engine information structure in which the engine information is returned. The
dwStructSize member must be set to size (HHP_ENGINE_INFO) before making the call.

hhpReadlmagerCapabilities
Returns the fixed imager capabilities, such as imager bits per pixel or image capture width and height.

Note: As with all other HHP structures, the dwStructSize member of the structure must be set before calling this function. (Set
to sizeof (HHP_IMAGER_CAPS).)

hhpReadimagerCapabilities(
HHP_IMAGER_CAPS pIimgrCaps

)

Parameter Description
plmgrCaps Pointer to the HHP_IMAGER_CAPS structure.

hhpReadSymbologyConfig

Reads configuration items for a single symbology or for all symbologies. Individual items to be read are specified by adding the
appropriate mask bit (OR it) to the mask member of the structure to which it belongs. Only items whose bits are set are read; all
other items are ignored.

hhpReadSymbologyConfig(

SetupType_t cfgType,

int nSymbol,

PVOID pvSymStruct

)

Parameter Description

cfgType Use SETUP_TYPE_CURRENT for the current settings, or SETUP_TYPE_DEFAULT for
the customer default settings.

nSymbol One of the symbology enumerated types, e.g., SYM_CODE39, SYM_OCR, or SYM_ALL
to read all symbologies.

pStruct Pointer to the appropriate structure based on nSymbol, e.g., CODE39_T, OCR_T, or

HHP_SYM_CONFIG if all symbologies.

Download from Www.Somanuals.com. All Manuals Search And Download.

hhpReadSymbologyRangeMaxMin

Returns the specified symbology range maximum and minimum values. If a symbology has no range values, the function returns
-1 for the minimum and maximum values.

hhpReadSymbologyRangeMaxMin(
int symbol,

PLONG pnRangeMin,

PLONG pnRangeMax

)

Parameter Description

int The enumerated symbology types, eg., SYM_CODE39, SYM_PDF417, or SYM_ALL to
read the max/min range for all symbologies.

pnRangeMin A LONG pointer to hold the minimum range value for single symbologies, or a LONG array

of size NUM_SYMBOLOGIES if SYM_ALL specified. The min value will be -1 if the
symbology does not support a minimum length value.

pnRangeMax A LONG pointer to hold the maximum range value for single symbologies, ora LONG array
of size NUM_SYMBOLOGIES if SYM_ALL specified. The max value will be -1 if the
symbology does not support a maximum length value.

hhpSendActionCommand

This command allows the application to modify some of the imager hardware states. The items that can be modified include
turning the illumination LEDs on/off, turning the aimer LEDs on/off, or causing the device’s beeper to beep/double beep.

hhpSendActionCommand(

HHP_ACTION actionCmd,

int nVal)

Parameter Description

actionCmd One of the values of enum HHP_ACTION (HHP_AIMER_CMD,
HHP_ILLUMINATION_CMD, or HHP_BEEP_CMD).

nVal HHP_ON/HHP_OFF for illumination or aimers
HHP_SINGLE_BEEP/HHP_DOUBLE_BEEP for beeper.

hhpSendMessage

The SDK API provides access to almost all of the imager command set. hhpSendMessage allows applications to send menu
(imager) commands directly to the imager (both wrapped and unwrapped) and to receive the actual uninterpreted imager
response. This command allows a developer to send debug commands to the imager.

hhpSendMessage(

PBYTE puchMsg,

int nLen,

BOOL bSendRaw,

PBYTE puchReply,

int nLenToRead,

PINT pnRetLen

)

Download from Www.Somanuals.com. All Manuals Search And Download.

Parameter Description

puchMsg Command sent to the imager with or without command wrapper. If no wrapper, set
bSendRaw to TRUE.

nLen Number of bytes to send (in puchMsg).

bSendRaw If TRUE, the SYN M CR command wrapper is NOT added to the command before sending
it to the imager. If FALSE, the command is sent withSYN M CR command wrapper.

puchReply Buffer to hold imager response. Can be NULL if no response required.

nLenToRead Number of bytes to read from imager in response. 0 if no response.

pnRetLen Pointer to number of bytes returned in pnRetLen. NULL if no response required.

hhpSetAsyncMethods

hhpSetAsyncMethods sets the methods by which the caller wishes to be notified upon receipt of a barcode or image.

hhpSetAsyncMethods(
HANDLE hEventHandle,
HWND hWndHandle,
HHP_EVENT_CALLBACK EventCallback
)
Parameter Description
hEventHandle Handle to a Windows Event. The event should specify manual reset.
hWndHandle Handle to the application window that should receive the SDK defined message

WM_HHP_EVENT_HWND_MSG. The message parameters are:
WPARAM The event type (hhpEventType_t)
LPARAM The number of bytes received
EventCallback Callback function of type HHPEVENTCALLBACK, which is BOOL CALLBACK name (
EventType_t,DWORD).

hhpSetBarcodeDataCodePage

This function changes the code page used when translating the decoded data from a string of bytes to Unicode. The default
value is CP_ACP (ANSI code page). There is no error checking on the values sent to this function, so you must determine
whether or not a code page is valid on the given system.

hhpSetBarcodeDataCodePage(

DWORD dwCodePage

)

Parameter Description

dwCodePage Code page to use when converting from BYTE string to Unicode. The only 2 code pages

that are valid are CP_ACP and CP_OEMCP.

hhpSetConfigltemToDefaults

Defaults a configuration group or individual group structure items.

hhpSetConfigltemToDefaults(
Configltems_t item

)

Download from Www.Somanuals.com. All Manuals Search And Download.

Parameter Description
item One of the members of the enumerated type Configltems_t. The valid values are:

BEEPER_CONFIG Resets HHP_BEEPER structure settings to their
defaults.

TRIGGER_CONFIG Resets HHP_TRIGGER structure settings to their
defaults.

DECODER_CONFIG Resets HHP_DECODER structure settings to their
defaults.

POWER_CONFIG Resets HHP_POWER_SETTINGS structure settings to
their defaults.

SYMBOLOGY_CONFIG Resets HHP_SYM_CONFIG structure settings to their
defaults.

SERIAL_PORT_CONFIG Resets HHP_SERIAL_PORT_CONFIG structure
settings to their defaults. Connection to the imager is
maintained.

IMAGE_ACQUISITION Resets HHP_IMAGE_ACQUISITION structure settings
to their defaults.

IMAGE_TRANSFER Resets HHP_IMAGE_TRANSFER structure settings to
their defaults (not progress notification methods).

ALL_CONFIG Resets all of the above.

hhpSetHardwareLineDIIFileName

The SDK API provides the ability to provide OEM device-dependent extensions to support the imager hardware sleep lines, and
hardware trigger and/or special COM port driver configuration/initialization. The definitions and function prototype are located in
the header file OemDIl.h. Also see OEM-Configurable SDK Functionality on page 5-1.

hhpSetHardwareLineDIIFileName(
PTCHAR ptcHwrFilename

)

Parameter Description
ptcHwrFilename Name of DLL provided by OEM containing some or all of the function exports described in
the header file OemDlIl.h

hhpSetSymbologyDefaults

Resets an individual symbology or all symbologies to their default values.
hhpSetSymbologyDefaults(

int nSymid
)
Parameter Description
nSymld One of the symbology enumerated types, e.g., SYM_CODE39, SYM_OCR, or SYM_ALL
to default all symbologies.
hhpUpgradeFirmware

The 5X00 Series provides the ability to update the firmware application running on the imager. hhpUpgradeFirmware checks the
file contents to verify that it is a firmware application file before the file is downloaded to the imager. The firmware file is
transferred to the imager compressed (lossless) unless the SDK has determined that the imager is running in bootstrap code
instead of the current firmware application. In this case, the file is transferred uncompressed. This function only supports
synchronous operation, so it does not return until the firmware file has been transferred to the imager and the imager has burned
the new code into flash memory. When this function returns, the connection (host COM port) is connected at the default baud
rate of 115200.

Download from Www.Somanuals.com. All Manuals Search And Download.

hhpUpgradeFirmware(

const PTCHARptcFirmwareFilename,
PDWORD DpdwTransferPercent,
HWND hTransferNotifyHwnd

)

Parameter Description

ptcFirmwareFilename String containing the fully qualified filename of the file that contains the code to be sent to the
imager. The file extension is usually .bin or .axf. The file is sent using an Hmodem, which is a
derivative of Xmodem 1K.

pdwTransferPercent Pointer to a DWORD that contains the current percent transferred value(0 to 100). If
pdwTransferPercent is valid, the transfer completion percent is written to it. This is updated after
each packet is sent.

hTransferNotifyHwnd Handle to the window that is to receive the transfer update messages. The message is sent
when the percentage changes by more than 1%. The window associated with the handle should
hook the WM_HHP_PROGRESS_HWND_MSG message.

After file transfer is complete and while the imager is storing the new code in flash, the message
WM_HHP_IMAGER_FLASHING is sent to the window HWND (if valid). The parameters are:
WPARAM - Bytes transferred so far

LPARAM - Bytes to be sent

The window should also hook the WM_HHP_IMAGER_FLASHING message. The parameters
sent are:

1st Call wParam=1 IParam=0 ransfer is done and flashing has begun

Subsequent wParam=x IParam=1 Where x toggles between 0 and 1 every %> second

Final Call wParam=0 IParam=0 Flashing is complete

hhpWriteConfigltem

Writes the configuration items for one or all of the configuration structures found in the main 5X00 Series configuration structure
HHP_CONFIG. Individual items can be specified by adding the appropriate mask bit by ORing it with the dwMask member of
the structure. Only items whose bits are set are written; all other items are ignored.

hhpWriteConfigltem(

Configltems_t item,

PVOID pStruct

)

Download from Www.Somanuals.com. All Manuals Search And Download.

Parameter
item

pStruct

hhpWriteConfigStream

Description

One of the members of the enumerated type Configltems_t. The valid values are:

BEEPER_CONFIG Writes the HHP_BEEPER structure settings specified
by the dwMask value to the imager.

TRIGGER_CONFIG Writes the HHP_TRIGGER structure settings specified
by the dwMask value to the imager.

DECODER_CONFIG Writes the HHP_DECODER_CONFIG structure
settings specified by the dwMask value to the imager.

POWER_CONFIG Writes the HHP_POWER_SETTINGS structure
settings specified by the dwMask value to the imager.

VERSION_INFO Returns the SDK, imager firmware, and imager boot
code versions.

SYMBOLOGY_CONFIG Writes the HHP_SYM_CONFIG individual structure

symbology settings specified by each structure's
dwMask value to the imager.

SERIAL_PORT_CONFIG Writes the HHP_SERIAL_PORT_CONFIG structure
settings specified by the dwMask value to the imager.
Connection to the imager is maintaned.

IMAGE_ACQUISITION Writes the HHP_IMAGE_ACQUISITION structure
settings specified by the dwMask value to the imager.
IMAGE_TRANSFER Writes the HHP_IMAGE_TRANSFER structure

settings specified by the dwMask value to the imager
(not progress notification methods).

SEQUENCE_CONFIG Returns the sequence mode enable/disable state and
the data sequence command string.
ALL_CONFIG Writes the members specified in each of the structures

of HHP_CONFIG. This includes all of the above except
SERIAL_PORT_CONFIG.
Pointer to the appropriate structure based on item:
HHP_BEEPER
HHP_TRIGGER
HHP_DECODER_CONFIG
HHP_POWER_SETTINGS
HHP_SYM_CONFIG
HHP_IMAGE_ACQUISITION
HHP_IMAGE_TRANSFER
HHP_SEQUENCE
HHP_CONFIG

Writes an entire data stream of programmable parameters to the device.

hhpWriteConfigStream(
PBYTE puchCfgStream,
int nLen

)

Parameter
puchCfgStream
nMaxLen

Description
Buffer to hold the raw imager configuration stream.
Maximum number of bytes that fit in buffer puchCfgStream.

Download from Www.Somanuals.com. All Manuals Search And Download.

hhpWriteSymbologyConfig

Writes configuration items for a single symbology or for all symbologies. Individual items to be written are specified by adding
the appropriate mask bit (OR it) to the mask member of the structure to which it belongs. Only items whose bits are set are
written; all other items are ignored.

hhpWriteSymbologyConfig(

int nSymid,
PVOID pvSymStruct
)

Parameter
nSymld

pStruct

Description

One of the symbology enumerated types, e.g., SYM_CODE39, SYM_OCR, or SYM_ALL
to write all symbologies.

Pointer to the appropriate structure based on nSymbol, e.g., CODE39_T, OCR_T, or
HHP_SYM_CONFIG if all symbologies.

Symbology Identifiers

Note: Please consult the appropriate symbology specification for discussion of AIM symbology IDs and modifiers.

Symbology Enumeration AIM ID ICDode (hex)
Australian Post SYM_AUSPOST, 1 X0 A (0x41)
Aztec Code SYM_AZTEC =0, 1zm z (0x7A)
Aztec Mesa SYM_MESA, lzm z (0x5A)
British Post SYM_BPO, 1X0 B (0x42)
Canadian Post SYM_CANPOST, 1 X0 C (0x43)
China Post SYM_CHINAPOST 1 X0 Q (0x51)
Codabar SYM_CODABAR, 1Fm a (0x61)
Codablock F SYM_CODABLOCK, 10m q (0x71)
Code 11 SYM_CODE11, 1H3 h (0x68)
Code 16K SYM_CODE16K 1Km o (OX6F)
Code 128 SYM_CODE128, 1Cm i (0X6A)
?P";\’s :If) Pharmaceutical SYM_CODE32,] X0 < (0x3C)
Code 39 SYM_CODE39, 1Am b (0x62)
Code 49 SYM_CODE49, 1Tm | (0x6C)
ggiiggs (4 State Customer | oy copEACB 1X0 M (0x4D)
Code 93 SYM_CODES93, 1Gm i (0x69)
Data Matrix SYM_DATAMATRIX,]dm w (0x77)
EAN-8 SYM_EANS,] E4 D (0x44)
EAN-13 SYM_EAN13, 1EO d (0x64)
EANeUCC Composite SYM_COMPOSITE, lem y (0x79)
Interleaved 2 of 5 SYM_INT25, 1lm e (0x65)
ISBT 128 SYM_ISBT,]C4 j (0x6A)
Japanese Post SYM_JAPOST, 1 X0 J (0x4A)

2-14

Download from Www.Somanuals.com. All Manuals Search And Download.

Code

Symbology Enumeration AIM ID D (hex)
KIX (Netherlands) Post SYM_DUTCHPOST, 1X0 K (0x4B)
Korea Post SYM_KORPOST, 1 X0 ? (0x3F)
Matrix 2 of 5 SYM_MATRIX25, 1 X0 m (0x6D)
MaxiCode SYM_MAXICODE, 1Um X (0x78)
MicroPDF417 SYM_MICROPDF, 1Lm R (0x52)
MSI SYM_MSI, 1Mm g (0x67)
PDF417 SYM_PDF417, 1Lm r (0x72)
Planet Code SYM_PLANET, 1X0 L (0x4C)
Plessey Code SYM_PLESSEY 1 PO n (Ox6E)
PosiCode SYM_POSICODE lpm W (0x57)
Postnet SYM_POSTNET, 1 X0 P (0x50)
OCR US Money Font SYM_OCR,]o3 o] (Ox4F)
QR Code SYM_QR, 1Qm s (0x73)
Reduced Space Symbology SYM_RSS, lem y (0x79)
Straight 2 of 5 Industrial SYM_STRT25 1S0 f (0x66)
Straight 2 of 5 IATA SYM_IATA25, 1Rm f (0x66)
TCIF Linked Code 39 (TLC39) SYM_TLCODE39, 1L2 T (0x54)
Telepen SYM_TELEPEN 1Bm t (0x74)
Trioptic Code SYM_TRIOPTIC 1X0 = (0x3D)
UPC-A SYM_UPCA, 1EO c (0x63)
g o-A with Extended CoUpon | gy coUPONCODE 1E3 c (0x63)
UPC-E SYM_UPCEQ, 1EO E (0x45)
UPC-E1 SYM_UPCE1, 1 X0 E (0x45)
UPU 4 State ID Tag SYM_UPUIDTAG 1X0 N (OX4E)

Download from Www.Somanuals.com. All Manuals Search And Download.

Download from Www.Somanuals.com. All Manuals Search And Download.

3

Error Codes

Enumerated Types and Definitions

RESULT_INTIALIZE = -1

Initial error code value.

RESULT_SUCCESS =0

Operation was successful.

RESULT_EOT = 256

Undefined error.

RESULT_ERR_BADFILENAME

Bad file name.

RESULT_ERR_BADINTELIMAGE

Part of image window outside barcode image boundaries.

RESULT_ERR_BADPORT

Invalid connection specified.

RESULT_ERR_BADREGION

Invalid image window.

RESULT_ERR_BADSMARTIMAGE

The device did not capture a valid image for intelligent imaging.

RESULT_ERR_BAUD_TOO_HIGH

Requested baud rate not supported by host port.

RESULT_ERR_BUFFER_TOO_SMALL

Buffer passed in to small for output.

RESULT_ERR_CAPTURE_IMAGE_FAILED

Imager failed to capture the image.

RESULT_ERR_COMPRESSION_FAILED

Error compressing image data.

RESULT_ERR_CONNECT_BOOT_CODE

Imager connected but is running in boot code.

RESULT_ERR_DECOMPRESSION_FAILED

Error decompressing image data.

RESULT_ERR_DLL_FILE

DIl file specified to SetHardwareDIIFileName not found.

RESULT_ERR_DRIVER

Communication error/no response.

RESULT_ERR_ENGINEBUSY

The scan engine temporarily busy.

RESULT_ERR_FILE

Error occurred during a file operation.

RESULT_ERR_FILEINCOMPATIBLE

The selected file is incompatible with the imager.

RESULT_ERR_FILEINVALID

The selected file is invalid or corrupt.

RESULT_ERR_INTERNAL_ERROR

Generic internal failure.

RESULT_ERR_INVALID_COMM_PARAMS

Invalid RS-232 parameters specified.

RESULT_ERR_MEMORY

Out of memory/memory allocation failed.

RESULT_ERR_MENUDECODE

Symbol decoded is a menu symbol.

RESULT_ERR_NAK

Received a NAK on response.

RESULT_ERR_NODECODE

No decode: timed out or no more trigger.

RESULT_ERR_NODRIVER

Communication initialization failed.

RESULT_ERR_NOIMAGE

hhpGetlLastimage called but no image available.

RESULT_ERR_NOINTELBARCODE

No decode during intelligent image capture.

RESULT_ERR_NOINTELIMAGE

Error on retrieve intelligent image from imager.

RESULT_ERR_NORESPONSE

Imager did not acknowledge request.

RESULT_ERR_NOTCONNECTED

Imager not yet connected.

RESULT_ERR_NOTRIGGER

During wait for decode, checks that trigger return is released.

RESULT_ERR_PARAMETER

One of the function parameters was invalid.

RESULT_ERR_POLLEVENT

Error configuring transfer thread.

RESULT_ERR_READTHREAD_START

Error starting asynchronous transfer thread.

RESULT_ERR_READTHREAD_STOP

Error stopping asynchronous transfer thread.

RESULT_ERR_REFLASH

Engine firmware is corrupt.

Download from Www.Somanuals.com. All Manuals Search And Download.

Error Codes (Continued)

RESULT_ERR_SHIP_IMAGE_FAILED

Imager failed to ship captured image.

RESULT_ERR_SMARTIMAGETOOLARGE

The captured image is too large to perform intelligent imaging.

RESULT_ERR_SYMBOLOGY_HAS_NO_RANGE

The symbology has no range maximum/minimum values.

RESULT_ERR_UNICODE_UNSUPPORTED

Attempted to set Code Page, but SDK is not UNICODE.

RESULT_ERR_UNSUPPORTED

The operation was not supported by the engine.

RESULT_ERR_UPGRADE

Upgrade of imager firmware failed.

RESULT_ERR_USER_CANCEL

User called hhpCancello to abort operation.

RESULT_ERR_WRONGRESULTSTRUCT

Wrong structure passed in for the type specified.

Setup Type Enumerated Type

SETUP_TYPE_CURRENT,

The current value in flash.

SETUP_TYPE_DEFAULT =0,

Hard coded Value. Set to current when imager “Reset To
Defaults.”

Symbology ID Enumeration

NUM_SYMBOLOGIES z;rtﬁt')gll(‘)z;zgr of supported All Decoders
SYM_ALL=100 All active symbologies All Decoders
SYM_AUSPOST, Australian Post 2D Decoder only
SYM_AZTEC =0, Aztec Code 2D Decoder only
SYM_BPO, British Post 2D Decoder only
SYM_CANPOST, Canadian Post 2D Decoder only
SYM_CHINAPOST China Post All Decoders
SYM_CODABAR, Codabar All Decoders
SYM_CODABLOCK, Codablock 2D Decoder only
SYM_CODE11, Code 11 All Decoders
SYM_CODE16K Code 16K All Decoders
SYM_CODE128, Code 128 All Decoders
SYM_CODES32 Code 32 Pharmaceutical (PARAF) All Decoders
SYM_CODE39, Code 39 All Decoders
SYM_CODEA49, Code 49 All Decoders
SYM_CODE4CB 4 State Customer Barcode 2D Decoder only
SYM_CODES93, Code 93 All Decoders
SYM_COMPOSITE, Composite Code 2D and PDF Decoders only
SYM_COUPONCODE UPC-A with Extended Coupon Code | All Decoders
SYM_DATAMATRIX, Data Matrix 2D Decoder only
SYM_DUTCHPOST, KIX (Netherlands) Post 2D Decoder only
SYM_EAN13, EAN-13 All Decoders
SYM_EANS, EAN-8 All Decoders
SYM_IATA25, Straight 2 of 5 IATA All Decoders

Download from Www.Somanuals.com. All Manuals Search And Download.

Symbology ID Enumeration (Continued)

SYM_INT25, Interleaved 2 of 5 All Decoders
SYM_ISBT, ISBT All Decoders
SYM_JAPOST, Japanese Post 2D Decoder only
SYM_KORPOST Korean Post All Decoders
SYM_MATRIX25, Matrix 2 of 5 All Decoders
SYM_MAXICODE, MaxiCode 2D Decoder only
SYM_MESA, Aztec Mesas 2D Decoder only
SYM_MICROPDF, MicroPDF417 2D and PDF Decoders
SYM_MSI, MSI Code All Decoders
SYM_OCR, 32?5%%2{%%%? B,OCRUS 2D Decoder only
SYM_PDF417, PDF417 2D and PDF Decoders
SYM_PLANET, Planet Code 2D Decoder only
SYM_PLESSEY Plessey Code All Decoders
SYM_POSICODE PosiCode All Decoders
SYM_POSTNET, Postnet 2D Decoder only
SYM_QR, QR Code 2D Decoder only
SYM_RSS, Reduced Space Symbology (RSS) All Decoders
SYM_STRT25 Straight 2 of 5 Industrial All Decoders
SYM_TELEPEN Telepen All Decoders
SYM_TLCODES39, TCIF Linked Code 39 (TLC39) All Decoders
SYM_TRIOPTIC Trioptic Code All Decoders
SYM_UPCA, UPC-A All Decoders
SYM_UPCEDQ, UPC-E All Decoders
SYM_UPCEH1, UPC-E1 (not truly standard) All Decoders

SYM_UPUIDTAG

ID tag (UPU 4-State)

2D Decoder only

Supported OCR Fonts

These are mutually exclusive. Only one font can be enabled at one time.

OCR_DISABLED =0,

Disable OCR Codes.

OCR_A, Enable OCR-A Font Decoding.
OCR_B, Enable OCR-B Font Decoding.
OCR_MONEY, Enable Money Font Decoding.

OCR_MICR_UNSUPPORTED,

Not supported.

Image Formats

FF_RAW_BINARY =0,

1 bit per pixel — Each row padded out to byte boundary.

FF_RAW_GRAY,

8 bits per pixel.

FF_TIFF_BINARY,

TIFF bilevel uncompressed.

FF_TIFF_BINARY_PACKBITS,

TIFF bilevel packbits compressed.

Download from Www.Somanuals.com. All Manuals Search And Download.

Image Formats (Continued)

FF_TIFF_GRAY, TIFF 8 bits per pixel uncompressed.
FF_JPEG_GRAY, JPEG lossy compression.
FF_BMP_GRAY Windows BMP file uncompressed.

Compression Mode Formats

COMPRESSION_NONE=0,

No compression.

COMPRESSION_LOSSLESS,

Huffman lossless compression.

COMPRESSION_LOSSY

JPEG lossy compression.

Capture lllumination Duty Cycle

HHP_DUTY_CYCLE_OFF =0,

Keep off during image capture.

HHP_DUTY_CYCLE_ON

Turn on for image capture.

#define | HHP_CAPTURE_ALWAYS_OFF

HHP_DUTY_CYCLE_OFF

#define | HHP_CAPTURE_ALWAYS_ON

HHP_DUTY_CYCLE_ON

Auto Exposure Type

HHP_AUTOEXPOSURE_BARCODE=0,

Autoexposure for decode image (darker with less noise).

HHP_AUTOEXPOSURE_PHOTO,

Autoexposure for pictures. (lighter, more pleasing image).

HHP_AUTOEXPOSURE_MANUAL

No Autoexposure. User should supply Exposure, Gain, and
Frame Rate Values.

#define | HHP_AUTOEXPOSURE_NONE

HHP_AUTOEXPOSURE_MANUAL;

#define | HHP_AUTOEXPOSURE_FIXED

HHP_AUTOEXPOSURE_NONE;

Gain Values Enum

Only used when in manual capture mode.
HHP_GAIN_1x=1,
HHP_GAIN_2x,
HHP_GAIN_4x=4,

Frame Rates Enum

Only used when in manual capture mode.
HHP_1_FRAMES_PER_SEC=1,
HHP_2_FRAMES_PER_SEC,
HHP_3_FRAMES_PER_SEC,
HHP_4_FRAMES_PER_SEC,
HHP_5_FRAMES_PER_SEC,
HHP_6_FRAMES_PER_SEC,
HHP_10_FRAMES_PER_SEC=10,
HHP_12_FRAMES_PER_SEC=12,
HHP_15_FRAMES_PER_SEC=15,
HHP_20_FRAMES_PER_SEC=20,

Download from Www.Somanuals.com. All Manuals Search And Download.

HHP_30_FRAMES_PER_SEC=30

Beeper Volume Enum

BEEP_OFF=0, Don’t sound beeper — no volume.
BEEP_LOW=1, Low volume.

BEEP_MEDIUM=2, Medium volume.

BEEP_HIGH=3 Loudest volume.

Decoder Mode Enum

DECODE_METHOD_STANDARD=0,

Normal decode mode (default).

DECODE_METHOD_QUICK_OMNI

Fast omni directional decoder .

DECODE_METHOD_NONOMNI_ALD

Non-omni advanced linear decoder.

DECODE_METHOD_OMNI_LINEAR

Omni-directional linear decoder.

System (MPU) Clock Speeds

Note: CPU clock speed must always be greater than system clock speed.

POWER_SYS_SPEED_96MHZ=0,

POWER_SYS_SPEED_48MHZ,
POWER_SYS_SPEED_32MHZ

Configuration Structure Item Enum for hhpReadConfigltem() and

hhpWriteConfigltem()

BEEPER_CONFIG=0,

Read/Write HHP_BEEPER items.

TRIGGER_CONFIG,

Read/Write HHP_TRIGGER_CONFIG items.

DECODER_CONFIG,

Read/Write HHP_DECODER_CONFIG items.

POWER_CONFIG,

Read/Write HHP_POWER_SETTINGS items.

VERSION_INFO,

Read/Write HHP_VERSION_INFO items.

SYMBOLOGY_CONFIG,

Read/Write HHP_SYM_CONFIG items. If specified in
hhpReadConfigltem(), all the symbology config items for all the
symbologies will be retrieved. Use hhpReadSymbologyConfig()
to specify individual symbology structures.

SERIAL_PORT_CONFIG,

Read/Write HHP_SERIAL_PORT_CONFIG items.

IMAGE_ACQUISITION,

Read/Write HHP_IMAGE_ACQUISITION items.

IMAGE_TRANSFER,

Read/Write HHP_IMAGE_TRANSFER items.

SEQUENCE_CONFIG

Read/Write SEQUENCE_CONFIG items.

ALL_CONFIG

Read/Write HHP_CONFIG items from structure memory in all
HHP configuration member structures.

Download from Www.Somanuals.com. All Manuals Search And Download.

Trigger Modes Enum

HHP_MANUAL_SERIAL =0,

Requires trigger to scan (either software or hardware). No Low
Power Mode.

UNUSED,

Unused.

HHP_MANUAL_LOW_POWER,

Requires trigger to scan (either software or hardware). Image
enters low power mode based on low power mode timeouts.

HHP_PRESENTATION,

The imager uses ambient light to detect barcodes. For further
information please see the 5X80 Integration Manual.

HHP_SCANSTAND,

Constantly looks for the scan stand barcode. When the imager
detects a barcode that is different from than the scan stand
barcode, it initiates a full trigger. For further information please
see the 5X80 Integration Manual.

HHP_HOST_NOTIFY

HHP_SNAP_AND_SHIP

Captures and sends an image when triggered (instead of
scanning for barcodes).

Sequence Mode

HHP_SEQ_DISABLED =0,

Sequence mode disabled.

HHP_SEQ_ENABLED,

Sequence mode enabled but not required.

HHP_SEQ_REQUIRED

Sequence mode enabled and required.

Serial Port Baud Rates
SERIAL_BAUD_300 = 300, 300 BPS
SERIAL_BAUD_600 = 600, 600 BPS
SERIAL_BAUD_1200 = 1200, 1200 BPS
SERIAL_BAUD_2400 = 2400, 2400 BPS
SERIAL_BAUD_4800 = 4800, 4800 BPS
SERIAL_BAUD_9600 = 9600, 9600 BPS
SERIAL_BAUD_19200 = 19200, 19200 BPS
SERIAL_BAUD_38400 = 38400, 38400 BPS
SERIAL_BAUD_57600 = 57600, 57600 BPS
SERIAL_BAUD_115200 = 115200, 115200 BPS

// Baud Rates that Require USB Serial or SIO950 Compatible Serial Port Driver

SERIAL_BAUD_230400 = 230400, 230400 BPS
SERIAL_BAUD_460800 = 460800, 460800 BPS
SERIAL_BAUD_921600 = 921600, 921600 BPS

Baud Rates that Require USB Serial or SIO950 Compatible Serial Port Driver

SERIAL_BAUD_230400 = 230400, 230400 BPS
SERIAL_BAUD_460800 = 460800, 460800 BPS
SERIAL_BAUD_921600 = 921600 921600 BPS

3-6

Download from Www.Somanuals.com. All Manuals Search And Download.

Serial Data Bits

SERIAL_DATA BITS_7 =7, 7 bit data
SERIAL_DATA BITS 8 8 bit data
Parity
SERIAL_PARITY_NONE = ‘N’, No parity
SERIAL_PARITY_ODD = ‘O, Odd parity
SERIAL_PARITY_EVEN = E/, Even parity
SERIAL_PARITY_MARK = ‘M, Mark parity

SERIAL_PARITY_SPACE = ‘S’

Space parity

Stop Bits
SERIAL_ONE_STOPBITS =1, 1 stop bit
SERIAL_TWO_STOPBITS, 2 stop bits

Connection Types

Currently limited to serial ports.
HHP_COM1=0, COM1
HHP_COM2, CcomM2
HHP_COMS3, COM3
HHP_COM4, COmM4
HHP_COMS5, COM5
HHP_COMS, COM6
HHP_COM?7, com7
HHP_COMS, COoM8
HHP_COM9, COM9
HHP_COM10, com1o
HHP_COM11, COM11
HHP_COM12, COM12
HHP_COM13, COM13
HHP_COM14, COM14
HHP_COM15, COM15
HHP_COM186, COM16
HHP_COM17, COM17
HHP_COM18, com18
HHP_COM19, com19
HHP_LAST_COMM_PORT=255 Last valid comm port.

Download from Www.Somanuals.com. All Manuals Search And Download.

Decoder Symbology Support

HHP_1D_CODES_ONLY=0,

1D Linear and stacked linear codes only.

HHP_1D_AND_PDF_CODES,

Same as above plus PDF417 and MicroPDF417.

HHP_1D_AND_2D_CODES

All symbologies.

HHP Action Commands

HHP_AIMER_CMD=0,

Aimer command (turn aimers on/off).

HHP_ILLUMINATION_CMD,

No longer supported by imagers.

HHP_BEEP_CMD

Beeper command (sound a single or double beep).

On/Off Enum
HHP_OFF=0, Turn Off (HHP_AIMER_CMD and HHP_ILLUMINATION_CMD).
HHP_ON=1 Turn On (HHP_AIMER_CMD and HHP_ILLUMINATION_CMD).

Beep Execute Enum

HHP_SINGLE_BEEP=0,

Single Beep (HHP_BEEP_CMD).

HHP_DOUBLE_BEEP=1

Double Beep (HHP_BEEP_CMD).

Imager Type Enum

HHP_UNKNOWN_IMAGER

Unable to determine engine type.

HHP_DECODED_IMAGER_4080

Serial (RS-232) 4080 imager with internal decoder.

HHP_DECODED_IMAGER_4080_USB

USB serial 4080 imager with internal decoder.

HHP_DECODED_IMAGER_5080VGA

Serial (RS-232) 5080 VGA imager with internal decoder.

HHP_DECODED_IMAGER_5080VGA_USB

USB serial 5080 VGA imager with internal decoder.

HHP_DECODED_IMAGER_5080VGA_PSOC

Serial (RS-232) 5080 VGA imager with internal decoder and
PSOC.

HHP_DECODED_IMAGER_5080VGA_PSOC_USB

USB serial 5080 VGA imager with internal decoder and PSOC.

HHP_DECODED_IMAGER_5080

Serial (RS-232) 5080 imager with internal decoder.

HHP_DECODED_IMAGER_5080_USB

USB serial 5080 imager with internal decoder.

HHP_DECODED_IMAGER_5080_PSOC

Serial (RS-232) 5080 imager with internal decoder and PSOC.

HHP_DECODED_IMAGER_5080_PSOC_USB

USB serial 5080 imager with internal decoder and PSOC.

lllumination Color Enum (5X10/5X80 engines only)

SECONDARY_LEDS

Alternate illumination color (if supported by engine).

PRIMARY_LEDS

Primary illumination color.

Download from Www.Somanuals.com. All Manuals Search And Download.

4

Structures and Mask Definitions

Important: All structures have a dwStructSize member that MUST BE SET before calling any of the 5X00 Series API functions.
This insures that the proper structure has been passed to the function being called.

Most structures have a dwMask member. This specifies which structure members are active (to be read or written). Select
structure items by ORing the individual structure masks for each of the items you wish to be active together.

Symbology Structures and Defines

All symbology structures are 1 of 3 possibilities.

Important: Symbology configuration definitions for each symbology are ORed together in the dwFlags member of the symbology
structure. The applicable flags are dependent on symbology. For example, Aztec Code accepts only
SYMBOLOGY_ENABLE, while Postnet accepts SYMBOLOGY_ENABLE and SYMBOLOGY_CHECK_TRANSMIT.

#define SYMBOLOGY_ENABLE

#define SYMBOLOGY_CHECK_ENABLE
#define SYMBOLOGY_CHECK_TRANSMIT
#define SYMBOLOGY_START_STOP_XMIT

#define SYMBOLOGY_ENABLE_APPEND_MODE
#define SYMBOLOGY_ENABLE_FULLASCII
#define SYMBOLOGY_NUM_SYS_TRANSMIT
#define SYMBOLOGY_2_DIGIT_ADDENDA
#define SYMBOLOGY_5_DIGIT_ADDENDA
#define SYMBOLOGY_ADDENDA_REQUIRED

#define SYMBOLOGY_ADDENDA_SEPARATOR

#define SYMBOLOGY_EXPANDED_UPCE
#define SYMBOLOGY_UPCE1_ENABLE

#define SYMBOLOGY_COMPOSITE_UPC

#define SYMBOLOGY_AZTEC_RUNE

#define SYMBOLOGY_AUSTRALIAN_BAR_WIDTH
#define SYMBOLOGY_AUS_CUST_FIELD_NUM

#define SYMBOLOGY_AUS_CUST_FIELD_AIPHA

0x00000001
0x00000002
0x00000004
0x00000008

0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000400

0x00000800
0x00001000

0x00002000
0x00004000
0x00010000
0x00020000

0x00040000

Flags for Aztec Mesas are reused, since Aztec Mesas have no addenda,

#define SYMBOLOGY_ENABLE_MESA_IMS
#define SYMBOLOGY_ENABLE_MESA_1MS
#define SYMBOLOGY_ENABLE_MESA_3MS
#define SYMBOLOGY_ENABLE_MESA_9MS
#define SYMBOLOGY_ENABLE_MESA_UMS
#define SYMBOLOGY_ENABLE_MESA_EMS
#define SYMBOLOGY_ENABLE_MESA_MASK

0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x007E0000

Enable Symbology bit.

Enable usage of check character.

Send check character.

Include the start and stop characters in the
decoded result string.

Code39 append mode.

Enable Code39 Full ASCII.
UPC-A/UPC-E Send Num Sys.

Enable 2 digit Addenda (UPC and EAN).
Enable 5 digit Addenda (UPC and EAN).
Only allow codes with addenda (UPC and
EAN).

Include Addenda separator space in
returned string.

Extended UPC-E.

UPC-E1 enable (use
SYMBOLOGY_ENABLE for UPC-EQ).
Enable UPC Composite codes.

Enable Aztec Code Run.

Include Australian postal bar data in string.
Customer fields as numeric data using the
N Table.

Customer fields as alphanumeric data
using the C Table.

extended UPC-E, or UPC-E1 enable flags.

Mesa IMS enable.

Mesa 1MS enabile.
Mesa 3MS enable.
Mesa 9MS enable.
Mesa UMS enable.
Mesa EMS enable.
Enable all Mesa.

There is only one symbology ID for RSE, RSL, and RSS, so 3 flags are used for enable.

#define SYMBOLOGY_RSE_ENABLE
#define SYMBOLOGY_RSL_ENABLE
#define SYMBOLOGY_RSS_ENABLE
#define SYMBOLOGY_RSX_ENABLE_MASK

Telepen and PosiCode

#define SYMBOLOGY_TELEPEN_OLD_STYLE
#define SYMBOLOGY_POSICODE_LIMITED_1

0x00800000
0x01000000
0x02000000
0x03800000

0x04000000
0x08000000

Enable RSE Symbology bit.
Enable RSL Symbology bit.
Enable RSS Symbology bit.
RSS enable all.

Telepen Old Style mode.
PosiCode Limited of 1

Download from Www.Somanuals.com. All Manuals Search And Download.

#define SYMBOLOGY_POSICODE_LIMITED_2 0x10000000 PosiCode Limited of 2
#define SYMBOLOGY_CODABAR_CONCATENATE 0x20000000 Codabar concatenate.
Flags for OCR are reused, since none of the other flags apply to OCR.

#define SYMBOLOGY_ENABLE_OCR_A 0x00000001 OCR-A enable.
#define SYMBOLOGY_ENABLE_OCR_B 0x00000002 OCR-B enable.
#define SYMBOLOGY_ENABLE_OCR_MONEY 0x00000004 OCR-Money enable.
#define SYMBOLOGY_ENABLE_OCR_MICR 0x00000008 OCR-Micr enable.
Symbology structure sets masks to specify which items of config structure are to be set or read.
#define SYM_MASK_FLAGS 0x00000001 Flags are valid.
#define SYM_MASK_MIN_LEN 0x00000002 Min Length valid.
#define SYM_MASK_MAX_LEN 0x00000004 Max Length valid.
#define SYM_MASK_OCR_MODE 0x00000008 OCR mode valid.
#define SYM_MASK_DIRECTION 0x00000010 OCR direction valid.
#define SYM_MASK_TEMPLATE 0x00000020 OCR template valid.
#define SYM_MASK_GROUP_H 0x00000040 OCR group H valid.
#define SYM_MASK_GROUP_G 0x00000080 OCR group H valid.
#define SYM_MASK_CHECK_CHAR 0x00000100 OCR check char valid.
#define SYM_MASK_ALL Oxffffffff Generic all mask.

Structure for symbologies with no specified minimum or maximum length:

typedef struct _tagSymFlagsOnly
{

DWORD dwStructSize; Set to sizeof(SymFlagsOnly_t);
DWORD dwMask; Mask which can only be 0 or SYM_MASK_FLAGS.
DWORD dwFlags; OR of valid flags for the given symbology.

} SymFlagsOnly_t, *PSymFlagsOnly_t;

Download from Www.Somanuals.com. All Manuals Search And Download.

Min/Max barcode lengths for symbologies that have length settings:

Code Min Max
Aztec 1 3750
China Post 2 80
Codabar 2 60
Codablock F 1 2048
Code 11 1 80
Code 16K 1 160
Code 128 0 80
Code 2 of 5 1 48
Code 39 0 48
Code 49 1 81
Code 93 0 80
DataMatrix 1 1500
EANeUCC Composite 1 2435
IATA Code 2 of 5 1 48
Interleaved 2 of 5 2 80
Korean Post 2 80
Matrix 2 of 5 1 80
MaxiCode 1 150
MicroPDF417 1 366
MSI 4 48
PDF417 1 2750
Plessey Code 4 48
PosiCode 2 80
QR Code 1 3500
Reduced Space Symbology (RSS) 4 74
Telepen 1 60

Structure for symbologies with minimum and maximum length:
typedef struct _tagSymFlagsRange

{
DWORD

DWORD
DWORD
DWORD
DWORD

dwStructSize;
dwMask;
dwFlags;
dwMinLen;
dwMaxLen;

} SymFlagsRange_t, *PSymFlagsRange_t;

Structure for unusual OCR:

Set to sizeof(SymFlagsRange_t);

Iltem Masks — SYM_MASK_FLAGS,MIN_LEN,MAX_LEN.
OR of valid flags for the given symbology.

Minimum length for valid barcode string for this symbology.
Maximum length for valid barcode string for this symbology.

#define MAX_TEMPLATE_LEN 256

#define MAX_GROUP_H_LEN 256

#define MAX_GROUP_G_LEN 256

#define MAX_CHECK_CHAR_LEN 64

typedef struct _tagSymCodeOCR

{
DWORD dwStructSize; Set to size of (SymCodeOcr_t);
DWORD dwMask; ltem masks.
OCRMode_t ocrMode; OCR Enable/Mode structure.
OCRDirection_t ocrDirection; OCR direction structure. Not supported.
TCHAR tcTemplate] MAX_TEMPLATE_LEN J]; Template for decoded data (‘d’ - decimal,

‘a’ - ASCII, T - letter, ‘e’ - extended).

TCHAR tcGroupG[MAX_GROUP_H_LEN J; Group G character string.

Download from Www.Somanuals.com. All Manuals Search And Download.

TCHAR
TCHAR

tcGroupH[MAX_GROUP_G_LEN J;
tcCheckChar[MAX_CHECK_CHAR_LEN J;

} SymCodeOCR_t, *PSymCodeOCR_t;

Structure of all Symbology Structures
There is one structure for each symbology. This info is stored in imager config.
Define aliases for each symbology structure:

#define AZTEC_T
#define MESA_T
#define CODABAR_T
#define CODE11_T
#define CODE128_T
#define CODE39_T
#define CODE49_T
#define CODE93_T
#define COMPOSITE_T
#define DATAMATRIX_T
#define EAN8_T
#define EAN13_T
#define INT25_T
#define MAXICODE_T
#define MICROPDF_T
#define OCR_T

#define PDF417_T
#define POSTNET_T
#define QR_T

#define RSS_T

#define UPCA_T
#define UPCE_T
#define ISBT_T

#define BPO_T

#define CANPOST_T
#define AUSPOST_T
#define IATA25_T
#define CODABLOCK_T
#define JAPOST_T
#define PLANET_T
#define DUTCHPOST_T
#define MSI_T

#define TLCODE39_T
#define MATRIX25_T
#define KORPOST_T
#define TRIOPTIC_T
#define CODE32_T
#define CODE25_T
#define PLESSEY_T
#define CHINAPOST_T
#define TELEPEN_T
#define CODE16K_T
#define POSICODE_T
#define COUPONCODE_T
#define CODE4CB_T
#define UPUIDTAG_T

SymFlagsRange_t
SymFlagsOnly_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymCodeOCR_t
SymFlagsRange_t
SymFlagsOnly_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsRange_t
SymFlagsOnly_t
SymFlagsRange_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsOnly_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsRange_t
SymFlagsOnly_t
SymFlagsOnly_t

SymFlagsOnly_t

Group H character string.
Check character string.

Aztec Code has max and min length values.
Aztec Mesa has flags only.

Codabar has max and min length values.
Code 11 has max and min length values.
Code 128 has max and min length values.
Code 39 has max and min length values.
Code 49 has max and min length values.
Code 93 has max and min length values.
Composite code has max and min length values.
Data Matrix has max and min length values.
EAN-8 has flags only.

EAN-13 has flags only.

Interleaved 2 of 5 has max and min length values.
MaxiCode has max and min length values.
MicroPDF417 has max and min length values.
OCR has its own structure.

PDF417 has max and min length values.
Postnet has flags only.

QR Code has max and min length values.
RSS Codes have max and min length values.
UPC-A has flags only.

UPC-E has flags only.

ISBT Code has flags only.

British Post has flags only.

Canadian Post has flags only.

Australian Post has flags only.

IATA 2 of 5 has max and min length values.
Codablock has max and min length values.
Japanese Post has flags only.

Planet Code has flags only.

KIX Post has flags only.

MSI Code has max and min length values.
TLCode 39 has flags only.

Matrix 2 of 5 Code has max & min length values.
Korea Post only has enable.

Trioptic Code has flags only.

Code 32 has flags only.

Code 2 of 5 has min and max length values.
Plessey Code has min and max length values.
China Post has min and max length values.
Telepen Code has min and max length values.
Code 16K has min and max length values.
PosiCode has min and max length values.
UPC Coupon code has flags only.

4 State Customer Barcode.

ID tag (UPU 4-State) has flags only.

Download from Www.Somanuals.com. All Manuals Search And Download.

typedef struct _tagSymCfg

{

DWORD

Linear Codes - Flags supported for this code:

CODABAR_T
CODE32_T
COUPONCODE_T
TRIOPTIC_T
CODE11_T
CODE128_T
CODES39_T
CODE49_T
CODE93_T
COMPOSITE_T
EANS_T

EAN13_T

IATA25_T
INT25_T
ISBT_T
MATRIX25_T
MSI_T
UPCA_T

UPCE_T

Postal Codes

AUSPOST_T
BPO_T
CANPOST_T
DUTCHPOST_T
JAPOST_T
KORPOST_T
PLANET_T
POSTNET_T
CHINAPOST_T
UPUIDTAG_T
CODE4CB_T

2D Codes

AZTEC_T
MESA_T

CODABLOCK_T
DATAMATRIX_T
MAXICODE_T
MICROPDF_T
PDF417_T
QR_T

RSS_T
TLCODES39_T
CODE25_T
PLESSEY_T
TELEPEN_T
CODE16K_T

dwStructSize;

codabar;
code32;
couponCode;
triopticCode;
codel1;
code128;
code39;
code49;
code93;
composite;
eans;

eani3;

iata25;
int20f5;
isbt;
matrix25;
msi;
upcA;

upcE;

australiaPost;
britishPost;
canadaPost;
dutchPost;
japanPost;
koreaPost
usPlanet;
usPostnet;
chinaPost;
upuldTag;
code4CB;

aztec;
aztecMesa,;

codablock;
datamatrix;
maxicode;
microPDF,;
pdf417;

qr;

rss;
tiCode39;
code20f5;
plesseyCode;
telepen;
code16k;

Set to sizeof(SymCfg_t);

Enable,Check,CheckSend,StartStop,Concatenate
Enable

Enable

Enable

Enable,Check,CheckSend

Enable
Enable,Check,CheckSend,StartStop,Append,FullAscii
Enable

Enable

Enable,CompositeUPC

Enable, Check, Addenda2, Addenda5, AddendaReq, Adden-
daSep

Enable, Check, Addenda2, Addenda5, AddendaReq, Adden-
daSep

Enable

Enable,Check,CheckSend

Enable

Enable

Enable,Check

Enable, check, NumSysTrans, Addenda2, Addenda5,
AddendaReq, AddendaSep

Enable, Check, NumSysTrans, Addenda2, Addenda5,
AddendaReq, AddendaSep, ExpandedE, EnableE1

Enable,AustralianBar
Enable
Enable
Enable
Enable
Enable
Enable,Check
Enable,Check
Enable
Enable
Enable

Enable,AztecRun
EnableIMS, Enable1MS, Enable3MS, Enable9MS, Enable-
UMS, EnableEMS
Enable

Enable
Enable,SCMOnly
Enable

Enable

Enable

Enable

Enable

Enable

Enable

Enable,Old Style Mode
Enable

Download from Www.Somanuals.com. All Manuals Search And Download.

POSICODE_T posiCode; Enable,Limited 1, Limited 2
Special OCR “code”
OCR_T ocr; None (See SymCodeOCR_t)

} SymCfg_t, HHP_SYM_CONFIG, *PSymCfg_t, *PHHP_SYM_CONFIG;
Data structures for decoded barcode message: hhpCaptureBarcode() and hhpGetAsyncResults(). Not stored in imager.

#define MAX_MESAGE_LENGTH 4096

typedef struct _tagHHP_DECODE_MSG

{

DWORD dwStructSize; Size of decode structure.

TCHAR pchMessage[MAX_MESAGE_LENGTH J; decoded message data

TCHAR chCodelD; AIM Id of symbology

TCHAR chSymlLetter; Hand Held Products Id of symbology
TCHAR chSymModifier; Modifier characters

DWORD nLength; length of the decoded message

} HHP_DECODE_MSG, DecodeMsg_t, *PHHP_DECODE_MSG;

typedef struct _tagHHP_RAW_DECODE_MSG

{

WORD wStructSize; Size of decode structure

BYTE chMessage[MAX_MESAGE_LENGTH J; Decoded message data

BYTE hCodelD; AIM ID of symbology

BYTE hSymLetter; HHP 1D of symbology

BYTE hSymModifier; Modifier characters

DWORD Length; Length of the decoded message

} HHP_RAW_DECODE_MSG, RawDecodeMsg_t, “PHHP_RAW_DECODE_MSG;

Imaging Structures and Defines

Image Acquisition bit mask:
The following are also configuration items:

#define WHITE_VALUE_MASK 0x00001 Target value (0-255) for the “white” pixel.
#define WHITE_WINDOW_MASK 0x00002 Acceptable delta from target white.
#define MAX_CAPTURE_RETRIES_MASK 0x00004 Max # of frames to try to get white value.
#define ILLUMINATION_DUTY_CYCLE_MASK 0x00008 How LEDs behave during image capture.
#define LIGHTS_DUTY_CYCLE_MASK 0x00008 Duplicate of above mask.

#define AIMER_DUTY_CYCLE_MASK 0x00010 How aimers behave during image capture.
#define FIXED_GAIN_MASK 0x00020 If manual mode, gain value to use.
#define FIXED_EXPOSURE_MASK 0x00040 If manual mode, exposure value to use.
#define FRAME_RATE_MASK 0x00080 If manual mode, frame rate to use.
#define AUTOEXPOSURE_MODE_MASK 0x00100 Barcode, Photo, or manual AGC mode.
#define IMAGE_CAPTURE_MODE_MASK 0x00100 Same as above mask.

Following 2 items are not config items and are only used in hhpAcquirelmage():

#define WAIT_FOR_TRIGGER_MASK 0x00200 Wait for trigger before capture.

#define PREVIEW_MODE_IMAGE_MASK 0x00400 Capture a preview image (214x160x8 JPEG).
Grouped masks:

#define CAPTURE_MASK_CONFIG_ALL 0x001ff Mask for all configuration items.

#define CAPTURE_MASK_FIXED_AGC 0x00180 Mask for all manual exposure mode items.
#define CAPTURE_MASK_ALL 0x007ff Mask for all structure members.

4-6

Download from Www.Somanuals.com. All Manuals Search And Download.

Image Acquisition structure:

typedef struct _tagHHP_IMAGE_ACQUISITION

{
DWORD

DWORD

Config items
DWORD

DWORD

DWORD
HHP_DUTY_CYCLE

HHP_DUTY_CYCLE
HHP_GAIN
DWORD

HHP_FRAME_RATE
HHP_AUTOEXPOSURE

dwStructSize;
dwMask;

dwWhiteValue;
dwWhiteWindow;
dwMaxNumExposures;
illuminatCycle;

aimerCycle;
fixedGain;
dwFixedExposure;

frameRate;
captureMode;

Capture time only, not real config items:

BOOL

BOOL

bWaitForTrigger;

bPreviewlmage;

} HHP_IMAGE_ACQUISITION, *PHHP_IMAGE_ACQUISITION;

Image Transfer bit masks:

#define BITS_PER_PIXEL_MASK

#define SUBSAMPLE_VALUE

#define SUBSAMPLE_VALUE_MASK
#define BOUNDING_RECTANGLE_MASK
#define COMPRESSION_MODE_MASK
#define HISTOGRAM_STRETCH_MASK
#define COMPRESSION_FACTOR_MASK
#define EDGE_ENHANCEMENT_MASK
#define GAMMA_CORRECTION_MASK
#define TEXT_ENHANCEMENT_MASK
#define INFINITY_FILTER_MASK

#define FLIP_IMAGE_MASK

#define NOISE_FILTER_MASK

#define TRANSFER_UPDATE_HWND
#define TRANSFER_UPDATE_DWORD
#define TRANSFER_MASK_ALL

#define TRANSFER_MASK_ALL_NO_NOTIFY

Image Transfer structure:

0x00001
0x00002
0x00002
0x00004
0x00008
0x00010
0x00020
0x00100
0x00200
0x00400
0x00800
0x01000
0x02000
0x00040
0x00080
0xO03fff
0x03f3f

typedef struct _tagHHP_IMAGE_TRANSFER

{
DWORD

DWORD

Config items:
DWORD

DWORD

dwStructSize;
dwMask;

dwBitsPerPixel;

dwSubSample;

Size of structure in bytes.
Mask of active items.

Target “white pixel” value.

Acceptable delta from white value.

Max frame capture tries for white value.
lllumination duty cycle (never on, on during imag-
ing).

Aimer duty cycle (never on, on during imaging).
If manual capture mode, gain value for capture.
If manual capture mode, exposure time for cap-
ture.

If manual capture mode, frame rate for capture.
Autoexposure (AGC) Capture mode: barcode,
photo or manual.

Wait for hardware or software trigger before cap-
turing image.

Capture a preview image. These are subsample
3, full window, JPEG transfer images.

Number of bits per pixel transferred (1 or 8).
Subsample value (1-10).

Subsample value (1-10).

Rectangular region within image to send.

No Compression, Lossless or Lossy.

Range -> 0 - 255.

If lossy compression, image quality percent.
Edge sharpening filter.

Gamma correction.

Text sharpening filter.

Sharpening for image beyond normal focus.
Rotate the image 180 degrees.

Smoothing (fly spec) filter.

Transfer progress message window.

Pointer to DWORD for percent of transfer complete.
Mask to select all configuration items in structure.
Mask to select all structure members.

Size of structure in bytes.
Mask of active items.

Bits per pixel for transferred image (1 or 8 bits
only).

Subsample value. This means take every dwSub-
Sample pixels of every dwSubSample row. The
default is 1.

Download from Www.Somanuals.com. All Manuals Search And Download.

RECT

BOOL
Compression_t

DWORD

DWORD

DWORD

DWORD

BOOL

BOOL

BOOL

boundingRect;

bHistogramStretch;
compressionMode;

dwCompressionFactor;

dwEdgeEhancement;

dwGammacCorrection;

dwTextEnhancement;

binfinityFilter;

bFliplmage;

bNoiseFilter;

Transfer time only, not stored in imager:

HWND

PDWORD

hTransferNotifyHwnd;

pdwTransferPercent;

} HHP_IMAGE_TRANSFER, *PHHP_IMAGE_TRANSFER,;
Data structure for captured image: hhpAcquirelmage(), hhpGetLastimage() and hhpGetAsyncResult(). Not stored in im-

ager.
typedef struct _tagHHP_IMAGE
{

DWORD

PBYTE

LONG

FileFormat_t

DWORD

LONG

SIZE

LONG

LONG

LONG

dwStructSize;
puchBuffer;
nBufferSize;
fileFormat;
dwJpegQFactor;
nBytesReturned;
imgSize;
nCapturedFrames;
nGain;
nExposureTime;

Rectangle describing a window within the image.
All pixels outside this rectangle are omitted from
the transferred image.

Scaled frequency of total image pixels.

How image is compressed on transfer. Compres-
sion reduces the amount of data to transfer but
can reduce image quality (Lossy compression)
and does take a finite length of time.

Lossy compression is JPEG lossy. If lossy com-
pression, this value specifies the image quality
percentage from 100 (virtually no loss) to 1 (very
poor). Image size drops with decrease in image
quality.

A sharpening filter used to sharpen light/dark
edges within the image. The valid range of values
is 0 (no edge enhancement) to 23 (maximum edge
enhancement).

Applies gamma correction to the image. The valid
range is 0 (no gamma correction) to 1000 (maxi-
mum correction).

This filter is an edge sharpening filter optimized for
text. The valid range is 0 (no text enhancement) to
255 (maximum enhancement).

This is a boolean flag (TRUE or FALSE) that
applies a filter to the image that sharpens objects
beyond the normal focal distance of the imager.
This is a boolean flag (TRUE or FALSE) that flips
the image 180°

This is a boolean flag (TRUE or FALSE) that
enables or disables the imager smoothing filter.

The user-defined window message.
WM_HHP_PROGRESS_HWND_MSG (wParam
is bytes so far, IParam is bytes to send) will be
sent if this member mask specified and its value is
a valid windows handle.

If non-NULL and specified in MASK, the percent
complete of the transfer is placed here. Itis up to
the caller to check the value in a thread or timer
callback.

Size of structure in bytes.

Buffer for image.

Size of buffer in bytes.

Format for returned data.

JPEG Quality Factor.

Number of bytes returned.

Size of image returned.

Number of frames captured prior to this image.
Gain value used to capture this image.
Exposure time used to capture this image.

Download from Www.Somanuals.com. All Manuals Search And Download.

LONG nUnderexposedPixels; Number of underexposed pixels in image.
LONG nOverexposedPixels; Number of overexposed pixels in image.

} HHP_IMAGE, *PHHP_IMAGE;

Other Imager Configuration Structures and Defines

Beeper member valid bitmasks:

#define BPMASK_ON_DECODE 0x00001 Beep on successful decode.
#define BPMASK_SHORT_BEEP 0x00002 Beep on imager reset.

#define BPMASK_MENU_CMD_BEEP 0x00004 Beep on receive menu command.
#define BPMASK_BEEP_VOLUME 0x00008 Set the beeper volume.

#define BPMASK_ALL 0x0000f Mask for all members valid.

Beeper structure:
typedef struct _tagHHP_BEEPER
{

DWORD dwStructSize; Size of structure in bytes.

DWORD dwMask; Mask of active items.

BOOL bBeepOnDecode; Sound beeper on successful decode.

BOOL bShortBeep; Sound beeper whenever imager resets.

BOOL bMenuCmdBeep; Sound beeper whenever a menu command is received.
BEEPER_VOLUME beepVolume; Set the beeper volume.

} HHP_BEEPER, *PHHP_BEEPER;
Trigger timeout range:

#define MIN_TRIGGER_TIMEOUT_VAL 0 Infinite

#define MAX_TRIGGER_TIMEOUT_VAL 300000 5 Minutes

Trigger structure masks:

#define TRGMASK_TRIG_MODE 0x00001 Enable/disable manual trigger mode.
#define TRGMASK_TIMEOUT 0x00002 Sanity timeout on trigger event.
#define TRGMASK_ALL 0x00003 All members valid mask.

Triggering control:
typedef struct _tagHHP_TRIGGER
{

DWORD dwStructSize; Size of structure in bytes.
DWORD dwMask; Mask of active items.
HHP_TRIG_MODES TriggerMode; Trigger mode.

DWORD dwTriggerTimeout; 0->9999 (milliseconds).

} HHP_TRIGGER, *PHHP_TRIGGER;
Engine information structure defines:

#define MAX_SHORT_VERSION_LEN 32
#define MAX_SERIAL_NUMBER_LEN 16
#define MAX_CHECKSUM_LEN 8
#define ENGINE_ID_DIGITS 4

Engine information structure
typedef struct _tagHHP_ENGINE_INFO
{

DWORD dwStructSize; Structure size
TCHAR tcEngld[ENGINE_ID_DIGITS]; 4 digit ASCII Hex.
TCHAR tcHHPSerialNumber[MAX_SERIAL_NUMBER_LEN J; ASCII Decimal
TCHAR tcCustomSerialNumber] MAX_SERIAL_NUMBER_LEN J; ASCII Decimal
LONG nAimerX; Aimer X

Download from Www.Somanuals.com. All Manuals Search And Download.

LONG
LONG
TCHAR
TCHAR
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
TCHAR

nAimerY; Aimer Y

nLaserPower; Laser power in mW
tcFirmwareChecksum[MAX_CHECKSUM_LEN J; Firmware Checksum (ASCII Hex)
tcFirmwareRev[MAX_SHORT_VERSION_LEN J; Firmware revision number.Number
nLedCtrIMode; How LEDs are controled.
nLedClr; LED color (red or green LEDs)
nPwmpFreq; PWM base frequence.
nRedLedCurrent; Red LED current (mA).
nRedLedMaxCurrent; Red LED max current (mA).
nGreenLedCurrent; Green LED current (mA).
nGreenLedMaxCurrent; Green LED max current (mA).

nAimerCurrent;
nAimerMaxCurrent;
nPixelClockFreq;

Aimer current (mA).
Aimer max current (mA).
Pixel clock frequency (MHz)

tcRegisterChecksum[MAX_CHECKSUM_LEN J; Register chcksum (ASCII hex)

} HHP_ENGINE_INFO, *PHHP_ENGINE_INFO;

Sequence structure defines:
#define MAX_SEQ_BARCODES 12

#define MAX_NUM_START_

CHARS 32

#define SEQ_ALL_LENGTH 9999

Sequence structure masks:

#define SEQMASK_MODE 0x00001 sequenceMode

#define SEQMASK_BARCODES 0x00002 dwNumBarCodes & seqBarCodes|]

#define SEQMASK_ALL 0x00003 Everything

Individual sequence barcode structure:

typedef struct _tagSeqltem

{
LONG nSymid; Symbology identifier SYM_xxxx
LONG nLength; Match length or 9999 to match any length.
TCHAR tcStartChars] MAX_NUM_START_CHARS+1]; Matching string (from start)

} SegBarCode_t, “PSeqBarCode_t;

Sequence structure:

typedef struct _tagHHP_SEQUENCE_MODE

{
DWORD
DWORD

dwStructSize;
dwMask;

HHP_SEQ_MODES sequenceMode;

DWORD
SeqBarCode_t

TCHAR

} HHP_SEQUENCE_MODE, *PHHP_SEQUENCE_MODE;

dwNumBarCodes;

Size of structure in bytes

Mask of active items
Disabled/Enabled/Enabled & Required

This MUST be sent if sending seqBarCodes

seqBarCodes[MAX_SEQ_BARCODES]; Barcodes to sequence in order they are to be

sent

tchSeqCmdBIKk[SIZE_OF_SEQUENCE_BLOCK J;

Decode method stucture masks:
#define DCMASK_MAX_MESSAGE_LENGTH 0x00001

Maximum length of decoded string. This item is Read Only.

#define DCMASK_DECODE_MULTIPLE 0x00002 Look for and report all barcodes in captured frame.

#define DCMASK_USE_AIMERS 0x00004 Use aimers when capturing barcodes.

#define DCMASK_PRINT_WEIGHT 0x00008 Relative contrast between barcode and background (0-9).

#define DCMASK_DECODE_METHOD 0x00010 Normal, linear codes only. Fastest (may miss codes at
edges of image).

#define DCMASK_CENTER_ENABLE 0x00020 Only accept barcodes whose boundaries intersect center
window.

#define DCMASK_CENTER_WINDOW 0x00040 Rectangle about center of image for previous mask.

4-10

Download from Www.Somanuals.com. All Manuals Search And Download.

#define DCMASK_ILLUMINAT_LED_COLOR 0x00080
#define DCMASK_ALL 0x000ff
Decoder functionality settings:

typedef struct _tagHHP_DECODER_CONFIG

{

DWORD dwStructSize;
DWORD dwMask;
DWORD dwMaxMsgSize;
BOOL bDecodeMultiple;
BOOL bUseAimers;
DWORD dwPrintWeight;

DECODE_METHOD decodeMethod;

BOOL bCenterDecodeEnable;
RECT centerWindow;
ILLUM_LED_COLOR illumLedColor;

} HHP_DECODER_CONFIG, *PHHP_DECODER_CONFIG;

Aimer Modes:
typedef enum

{
AIMER_MODE_ALWAYS_OFF=0,
AIMER_MODE_ILLUM_AND_AIM,
AIMER_MODE_ALWAYS_ON

} HHP_AIMER_MODES;

Power setting item masks:

#define PWRMASK_TRIGGER_MODE

#define PWRMASK_SERIAL_TRIGGER_TIMEOUT
#define PWRMASK_LOW_POWER_TIMEOUT
#define PWRMASK_STOP_MODE_TIMEOUT
#define PWRMASK_ILLUM_LED_INTENSITY
#define PWRMASK_SYS_SPEED

#define PWRMASK_AIMER_MODE

#define PWRMASK_AIMER_DURATION

#define PWRMASK_AIMER_DELAY

#define PWRMASK_IMAGER_IDLE_TIMEOUT
#define PWRMASK_ RS232_LOW_POWER_TIMEOUT
#define PWRMASK_ SLEEP_MODE_TIMEOUT
#define PWRMASK_POWER_OFF_HANDLE
#define PWRMASK_POWER_OFF_HWND

#define PWRMASK_ALL

Matrix products power management structure:
typedef struct _tagHHP_POWER_SETTINGS
{

DWORD dwStructSize;
DWORD dwMask;
HHP_TRIG_MODES TriggerMode;

Illumination LED color to use.
All structure members are active.

Size of structure in bytes.

Mask of active items.

Maximum length for any returned barcode string. This is a
read only value.

Decode and send all symbols decoded with first frame
where at least 1 symbol is found.

Turn on aimers during barcode capture.

How dark the barcode elements are relative to the back-
ground (1-7).

Normal decoder, linear codes only, fast normal decoder,
which omits checking at the image margins as well as
some bad barcode correction.

Does symbol have to intersect center decode window to be
valid.

Bounding coords of center window that decoded symbol
must intersect

lllumination LED color to use.

No aimer LEDs.
Aimer LEDs and illumination LEDs on simultaneously.
Aimer LEDs always on.

0x00001

0x00002
0x00004
0x00004
0x00008
0x00010
0x00020
0x00040
0x00080
0x00100
0x00200
0x00200
0x00400
0x00800
O0x00FFF

Download from Www.Somanuals.com. All Manuals Search And Download.

DWORD dwTriggerTimeout; 0->300000 (milliseconds).

DWORD dwLowPowerTimeout; 0 -> 300.

DWORD dwLEDIntensityPercent; 0 -> 100%.

HHP_SYS_SPEED systemClockSpeed; Clock speed for reset of system (except RS-232).

HHP_AIMER_MODES AimerMode; Aimer always on, alternating between illumination
LEDs, or disabled.

DWORD dwAimerDuration; 0 -> 240000 (milliseconds).

DWORD dwAimerDelay; 0 -> 240000 (milliseconds).

DWORD dwlmagerldleTimeout; 0 -> 999999 (milliseconds).

DWORD dw RS232LowPwrTimeout; 0 -> 300 (seconds). RS-232 inactivity timeout

used to enter sleep mode.

These are used to notify on suspend (WinCE Suspend) — Not stored in imager:

HANDLE hPowerOffHandle; Handle for system suspend wakeup notification.
HWND hPowerOffHwnd; Window HWND for system suspend wakeup noti-
fication message.
} HHP_POWER_SETTINGS, *PHHP_POWER_SETTINGS;

Version setting item masks — Items are read only:

#define VERMASK_SDK_API 0x00001 SDK version number.

#define VERMASK_IMAGER_FIRMWARE 0x00002 Imager firmware version.

#define VERMASK_IMAGER_PART_NUM 0x00004 Imager part number.

#define VERMASK_IMAGER_BOOT_CODE 0x00008 Imager boot code version.

#define VERMASK_IMAGER_DEVICE_TYPE 0x00010 Device type of which imager is part.
#define VERMASK_ALL 0x0001f All version info mask.

Revision information:

#define MAX_VERSION_STRING_LEN64
#define MAX_DEVICE_TYPE_STRING_LEN16
typedef struct _tagHHP_VERSION_INFO

{
DWORD dwStructSize; Size of structure in bytes.
DWORD dwMask; Mask of active items.
TCHAR tcAPIRev[MAX_VERSION_STRING_LEN J; SDK API version string.
TCHAR tcFirmwareRev[MAX_VERSION_STRING_LEN J; Imager firmware version.
TCHAR tcPartNumber[MAX_VERSION_STRING_LEN] ;Imager firmware part number.
TCHAR tcBootCodeRev[MAX_VERSION_STRING_LEN] ;Imager boot code version.
TCHAR tcDeviceType[MAX_DEVICE_TYPE_STRING_LEN] ;Imager device identifier.

} HHP_VERSION_INFO, *PHHP_VERSION_INFO;

Structure that includes all structures used to configure imager. See Configltems_t when specifying structure to call hh-
pReadConfigltem() and hhpWriteConfigltem().

typedef struct _tagHHP_CONFIG

{

DWORD dwStructSize; Size of HHP_CONFIG structure in bytes.
HHP_BEEPER beeperCfg; Beeper configuration structure.
HHP_TRIGGER triggerCfg; Trigger configuration structure.
HHP_DECODER_CONFIG decoderCfg; Decoder function configuration structure.
HHP_POWER_SETTINGS powerCfg; Power modes configuration structure.
HHP_VERSION_INFO versionlInfo; Version information structure.
HHP_SYM_CONFIG symbolCfg; Decoder symbology enables and configuration
structure.
HHP_IMAGE_ACQUISITION imgAcqu; Image acquisition configuration structure.
HHP_IMAGE_TRANSFER imgTrans; Image transfer configuration structure.

} HHP_CONFIG, *PHHP_CONFIG;

Download from Www.Somanuals.com. All Manuals Search And Download.

Intelligent Image Capture:

typedef struct

{
DWORD dwStructSize;
DWORD dwAspectRatio;
LONG nOffsetX;
LONG nOffsetY;
DWORD dwWidth;
DWORD dwHeight;
SIZE maximgSize;
BOOL bSendBinary;

} IntellimgDesc_t, HHP_INTEL_IMG, *PHHP_INTEL_IMG;

Serial Port Config:
typedef struct _tagHHP_SERIAL_PORT_CONFIG

{
DWORD dwStructSize;
HHP_BAUD_RATE baudRate;

HHP_DATA_BITS dataBits;

HHP_PARITY parity;
HHP_STOP_BITS stopBits;
BOOL bAutoBaud;

Size of HHP_INTEL_IMG structure in bytes.

Ratio of barcode height to minimum barcode element width.
Offset from barcode center to the image window center in X
direction, relative to barcode center in minimum barcode units.
Offset from barcode center to the image window center in Y
direction, relative to barcode center in minimum barcode units.
Width of image in minimum barcode units.

Height of image in minimum barcode units.

Maximum width and height for resulting intelligent image in pix-
els. Image size is guaranteed not to exceed either dimension.
Have reader binarize data before transfer.

Size of HHP_SERIAL_PORT_CONFIG structure in bytes.
Baud rate for connection. NOTE: Reader always powers up at
115200. The 5X00 Series changes the baud rate to this value
once it connects at 115200. Also, the SDK will not allow you to
connect at bauds above 115200 for WinCE unless the port
driver is si0950.dll (high speed driver for sio950 chipset).
Number of data bits.

Parity.

Number of stop bits.

Not supported in the IT4500.

} HHP_SERIAL_PORT_CONFIG, *PHHP_SERIAL_PORT_CONFIG;

Imager capabilities structure — ltems are read only:
typedef struct _tagHHP_IMAGER_CAPS
{

DWORD dwStructSize;
SIZE fulllmgSize;
DWORD dwimgrBpp;
DECODER_TYPE decoderType;
IMAGER_TYPE imagerType;

} HHP_IMAGER_CAPS, *PHHP_IMAGER_CAPS;

Imager Type (decoded out or non decoded out)
typedef enum

{
HHP_UNKNOWN_IMAGER
HHP_DECODED_IMAGER_4080
HHP_DECODED_IMAGER_4080_USB
HHP_NON_DECODED_IMAGER_4000
HHP_DECODED_IMAGER_5080VGA
HHP_DECODED_IMAGER_5080VGA_USB

HHP_NON_DECODED_IMAGER_5000VGA

Size of HHP_IMAGE_CAPS structure in bytes.

Size of image captured by imager before cropping and subsam-
pling.

Bits per pixel of image captured by imager.

Level of symbology support in the imager’s decoder.

Decoded Out Serial, Decoded Out USB, Non-Decoded Out.

Unable to determine engine type.

Serial (RS-232) 4080 imager with internal decoder.

USB serial 4080 imager with internal decoder

Incorporated 4000 imager.

USB serial 5080 VGA imager with internal decoder.

Serial (RS-232) 5080 VGA imager with internal decoder and
PSOC.

Incorporated 5000 VGA imager.

Download from Www.Somanuals.com. All Manuals Search And Download.

HHP_DECODED_IMAGER_5080VGA_PSOC
HHP_DECODED_IMAGER_5080VGA_PSOC_USB
HHP_NON_DECODED_IMAGER_5000VGA_PSOC
HHP_DECODED_IMAGER_5080
HHP_DECODED_IMAGER_5080_USB
HHP_NON_DECODED_IMAGER_5000
HHP_DECODED_IMAGER_5080_PSOC
HHP_DECODED_IMAGER_5080_PSOC_USB
HHP_NON_DECODED_IMAGER_5000_PSOC

} ImagerType_t, IMAGER_TYPE;

Serial (RS-232) 5080 imager with internal decoder.

USB serial 5080 imager with internal decoder.

Incorporated 5000 VGA imager with PSOC.

Serial (RS-232) 5080 imager with internal decoder.

USB serial 5080 imager with internal decoder.

Incorporated 5000 imager.

Serial (RS-232) 5080 imager with internal decoder and PSOC.
USB serial 5080 imager with internal decoder and PSOC.
Incorporated 5000 imager with PSOC.

Download from Www.Somanuals.com. All Manuals Search And Download.

5

OEM-Configurable SDK Functionality

The 5X80 accommodates a variety of PDA/PDT, static mount, and "gun" type installations, so the 5X00 Series has included the
flexibility to modify some SDK behaviors. You can provide a DLL that affords the SDK access to the hardware trigger, hardware
sleep lines, and access to the open driver handle and registry entries, which can be used to specify high speed baud rates
(greater than 115200). You can also specify whether to force a Y-modem communications protocol for image transfers.

OEM Supplied DLL

The OEM DLL interface is described in SDK header file OemDIl.h. The DLL can export some or all of the available functionality.
If the DLL is named ImgrHwrLines.dll and is located in the default library search path, it will be loaded automatically by the SDK.
Otherwise, it can by loaded manually by calling the SDK function hhpSetHardwareLineDIIFileName. The DLL exports are
described in the following list:

ConfigureCommPort

ConfigureCommPort performs any special driver configuration that needs to be done to support the specified communication port
settings. Configuring the communications driver requires the current driver handle, so you must also support
SetCommDriverHandle(). The function is called by the SDK whenever you set/change the communication port settings. It is
called after the SDK is finished processing pConfig, so any changes you make will not be overridden.

bool ConfigureCommPort(
PCommPortConfig pConfig

)

Parameter Description
pConfig The communication settings requested. The CommPortConfig structure contains:
Baud Rate, Data Bits, Parity, Stop Bits and RTS control.

ImagerPoweredDown

ImagerPoweredDown checks the imager powered down hardware line for the imager power state. The powered down hardware
line is active high. ImagerPoweredDown returns true if the hardware line is high, false if it is low.

bool ImagerPoweredDown(
void

)
ModifyCommPortDCB

ModifyCommPortDCB receives the RS-232 configuration (DCB) structure just before it's sent to the serial driver. You can then
modify the RTS/CTS and DTR/DTS settings if they are used for the imager’s power or trigger.

void ModifyCommPortDCB(

LPDCB IpDCB

)

Parameter Description

LPDCB IpDCB Structure used by windows to configure a serial port.
SetCommDriverHandle

SetCommDriverHandle receives the handle to the open communications port. The handle can then be used to access private
driver ioctl calls.

void SetCommDriverHandle(

HANDLE hDriver

)

Download from Www.Somanuals.com. All Manuals Search And Download.

Parameter Description
hDriver The current handle to the open driver used to communicate with the imager.
SetHardwareTrigger

SetHardwareTrigger triggers the imager hardware trigger line, depending on bEnable. The hardware trigger line is active low.
void SetHardwareTrigger(

bool bEnable

)

Parameter Description

bEnable If true, set trigger line low to trigger imager. If false, set trigger line high to turn off trigger.
WakeUpImager

WakeUplmager toggles the imager hardware wakeup line from low to high, delay, (see Integration Manual for timing), then from
high back to low.

void ImagerPoweredDown(

void

)

Registry Entries

There are two registry entries used to modify the SDK default behavior. The values are both located in the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Hand Held Products\MatrixDemos.

Baud Rate

The SDK will not normally allow high speed serial connections (connections greater than 115200 baud) unless it recognizes the
driver name in the registry. The first registry value, BaudRate, specifies the first baud rate at which the demos will attempt to
connect. It also overrides the normal block that sets high speed baud rates. This lets you specify a baud rate greater than
115200.

ForceHmodem

The SDK does not normally use its Y-Modem variant, Hmodem, if a high speed serial connection is specified. However, if your
driver does not support true hardware RTS flow control, there is a substantial risk of communication buffer overruns. These
overruns can cause data loss, especially during image transfer. The registry value ForceHmodem lets you force the use of the
communications protocol, preventing data buffer overflow.

Download from Www.Somanuals.com. All Manuals Search And Download.

Program Samples

Configuration Management

Sample 1 - Set code 39 defaults turning on Full ASCII

CODE39_Tcode39; // Structure for Code 39.

TCHAR tcErrMsgl[128]; // Error message buffer.

Result_tnResult = RESULT_ ERR_INTIALIZE; // Return code.

codel39.dwStructSize = sizeof(CODE39_T); // setup size parameter, used in
struct verification.

code39. dwMask = SYM_MASK_FLAGS; // you want all info.

if((nResult = hhpReadSymbologyConfig(SETUP_TYPE_DEFAULT, SYM_CODE39, &code39)) ==
RESULT_SUCCESS)
{
code39.dwFlags |: SYMBOLOGY_ENABLE_FULLASCII;// OR flags with Enable Full ASCII
flag to turn on code 39.
nResult = hhpWriteSymbologyConfig(SYM_CODE39, &code39);
}
hhpGetErrorMessage(nResult, tcErrMsg);
_tprintf(_T(“Setup Code39 Returned: %s\n”), tcErrMsg;

Sample 2 - Set the capture mode to photo image

Note:

This changes the imager configuration for the items selected. The imager uses these values if they are not overridden
at the time of image capture/transfer.

HHP_IMAGE_TRANSFER imgTrans; // Image transfer structure.
TCHAR tcErrMsgl[128 1; // Error message buffer.
Result_t nResult = RESULT ERR_INTIALIZE; // Return code.

// Set the structure size and structure mask
imgTrans.dwStructSize = sizeof (HHP_IMAGE_TRANSFER) ;
imgTrans.dwMask = IMAGE_CAPTURE_MODE_MASK;

// Turn on photo image mode.
ImgTrans.captureMode = HHP_AUTOEXPOSURE_PHOTO;

// Call the write configuration function specifying the HHP_ACQUISITION_STRUCTURE.
nResult = hhpWriteConfigItem(IMAGE_ACQUISITION, &imgTrans) ;

// Display error code (NOTE: RESULT_ SUCCESS error code returns string SUCCESS.
hhpGetErrorMessage(nResult,tcErrMsg);
_tprintf (_T(“*Change Imager Config To Photo Capture Mode: %s\n”), tcErrMsg;

Download from Www.Somanuals.com. All Manuals Search And Download.

Barcode Capture

Sample 3 - A synchronous barcode capture

HHP_DECODE_MSG decodeInfo;
TCHAR tcErrMsg|[128 1; // Error message buffer.
Result_t nResult = RESULT_ERR_INTIALIZE; // Return code.

// Make sure to set the structure size!
decodeInfo.dwStructSize = sizeof (HHP_DECODE_MSG) ;

// Call the SDK function to capture a barcode setting the bWait parameter to TRUE, 6
second timeout.

if ((nResult = hhpCaptureBarcode(&decodeInfo,6000,TRUE) == RESULT_SUCCESS)
{

_tprintf(_T(“Barcode: %s\n”),decodeInfo.pchMessage);

_tprintf(_T(“Barcode Length: %d\n”),decodeInfo.nLength);

_tprintf(_T(“AIM Id : %cn”),decodeInfo.chCodelID);

_tprintf(_T(“HHP Id: %cn”),decodeInfo.chSymLetter);

_tprintf(_T(“Symbol Modifier: %$c\n”),decodeInfo.chSymModifier);

}
else
{
hhpGetErrorMessage(nResult, tcErrMsg);
_tprintf(_T(“Capture Barcode Returned: %s\n”),tcErrMsg);
}
Sample 4 - An asynchronous barcode capture using an event
HHP_DECODE_MSG decodelInfo; // Returned decoded data message
structure.
hhpEventType_t eventType = HHP_BARCODE_EVENT; // Type of event that occurred.
TCHAR tcErrMsg[128 1; // Error message buffer.
Result_t nResult = RESULT ERR_INTIALIZE; // Return code.

// Verify the event is valid (or you won't get any notification)

If(hEvent != NULL)

{
// Register the event with the SDK.
if ((nResult = hhpSetAsyncMethods(hEvent,NULL,NULL) == RESULT_SUCCESS)
{

// Call the SDK function to capture a barcode setting the bWait parameter to FALSE,
6 second timeout.

if ((nResult = hhpCaptureBarcode(NULL,6000,FALSE) == RESULT_SUCCESS)
{

// Make sure to set the structure size!

decodeInfo.dwStructSize = sizeof (HHP_DECODE_MSG) ;

// Wait on event being set by SDK then call SDK to get results.

if(WaitForSingleObject (hEvent,7000) == WAIT OBJECT_O0)

nResult = hhpGetAsyncResult (&event, &decodeInfo);

}
}
if(nResult == RESULT_SUCCESS)
{
_tprintf “Barcode: %$s\n”),decodelInfo.pchMessage) ;
_tprintf “Barcode Length: %d\n”),decodeInfo.nLength);

_tprintf “HHP Id: %cn”),decodeInfo.chSymLetter);

(_T(
(_T(
_tprintf(_T(“AIM Id : %cn”),decodeInfo.chCodeID);
(_T(
_tprintf(_T(“Symbol Modifier: %c\n”),decodeInfo.chSymModifier);

Download from Www.Somanuals.com. All Manuals Search And Download.

}
else
{
hhpGetErrorMessage(nResult, tcErrMsg);
_tprintf(_T(“Capture Barcode Returned: %s\n”),tcErrMsg);

}

Sample 5 - An asynchronous barcode capture message notification

Note:

You must hook the message WM_HHP_EVENT_HWND_MSG in your message loop to receive a barcode event
notification. In this example, the message is hooked to call OnEventMsg.

TCHAR tcErrMsg[128]; // Error message buffer.
Result_t nResult = RESULT_ERR_INTIALIZE; // Return code.
HWND hiWwnd = GetSafeHwnd() ; // The window to which message is to be

sent. (note: this example is MFC c++)

// Register the message window with the SDK.
if ((nResult = hhpSetAsyncMethods (NULL, hWwnd,NULL) == RESULT_SUCCESS)
{

// Call the SDK function to capture a barcode, 6 second timeout. Unless call fails, you
will get a message when command completes.

if ((nResult = hhpCaptureBarcode(NULL,6000,FALSE) != RESULT_SUCCESS)
{

hhpGetErrorMessage(nResult,tcErrMsg);

_tprintf(_T(“Capture Barcode Returned: %$s\n”),tcErrMsg);

// Message Handler function
LRESULT OnEventMsg(WPARAM wParam, LPARAM lParam)
{

hhpEventTye_t eventType = (hhpEventType_t)wParam; // Event type

DWORD dwBytes = lParam; // Number of bytes in barcode.
You don’t actually use it
here.

HHP_DECODE_MSG decodeInfo; // Decode message structure.

TCHAR tcErrMsg[128]; // BError message buffer.

Result_t nResult = RESULT_ERR_INTIALIZE; // Return code.

// Verify the event type is barcode

if (eventType == HHP_BARCODE_EVENT)

{
// Make sure to set the structure size!
decodeInfo.dwStructSize = sizeof (HHP_DECODE_MSG) ;

if((nResult = hhpGetAsyncResult(&eventType, &decodeInfo)) == RESULT_SUCCESS)
{

_tprintf(_T(“Barcode: %s\n”),decodeInfo.pchMessage) ;

_tprintf(_T(“Barcode Length: %d\n”),decodeInfo.nLength);

_tprintf(_T(“AIM Id : %cn”),decodeInfo.chCodeID);

_tprintf(_T(“HHP Id: %cn”),decodeInfo.chSymLetter);

_tprintf(_T(“Symbol Modifier: %c\n”),decodeInfo.chSymModifier);

}
else
{
hhpGetErrorMessage(nResult, tcErrMsg);
_tprintf(_T(“Capture Barcode Returned: %s\n”),tcErrMsg);

Download from Www.Somanuals.com. All Manuals Search And Download.

Sample 6 - An asynchronous barcode capture using Callback function

TCHARtcErrMsg[128 1;
Result_tnResult = RESULT_ERR_INTIALIZE; // Return code.

// Message Handler function

BOOL CALLBACK EventCallback (HHP_EVENT_TYPE eventType, DWORD dwBytes)
{
HHP_DECODE_MSG decodeInfo;
TCHAR tcErrMsg[128];
Result_t nResult = RESULT_ERR_INTIALIZE; // Return code.

// Verify the event type is barcode
if (eventType == HHP_BARCODE_EVENT)
{
// Make sure to set the structure size!
decodeInfo.dwStructSize = sizeof (HHP_DECODE_MSG) ;
// Retrieve the barcode event data.
If((nResult = hhpGetAsyncResult (&eventType, &decodeInfo)) =

{
_tprintf(_T(“Barcode: %s\n”),decodeInfo.pchMessage);
_tprintf(_T(“Barcode Length: %d\n”),decodeInfo.nLength);
_tprintf(_T(“AIM Id : %cn”),decodeInfo.chCodelID);
_tprintf(_T(“HHP Id: %cn”),decodeInfo.chSymLetter);
_tprintf(_T(“Symbol Modifier: %$c\n”),decodeInfo.chSymModifier);
}
else

{
hhpGetErrorMessage(nResult, tcErrMsg);
_tprintf(_T(“Capture Barcode Returned: %s\n”),tcErrMsg);

}
}

// Code snippet to capture barcode

// Register the callback function with the SDK.

if ((nResult = hhpSetAsyncMethods (NULL,NULL, &EventCallback) == RESULT_SUCCESS

{

// Call the SDK function to capture a barcode, 6 second timeout. Unless call fails,

will get a message when command completes.

// Decode message structure.
// Error message buffer.

RESULT_SUCCESS

// BError message buffer.

if ((nResult = hhpCaptureBarcode(NULL,6000,FALSE) != RESULT_SUCCESS)

{
hhpGetErrorMessage(nResult, tcErrMsg);
_tprintf(_T("Capture Barcode Returned: %s\n"), tcErrMsg);

)

)

we

Download from Www.Somanuals.com. All Manuals Search And Download.

Image Capture

Sample 7 - A synchronous image capture

// Capture image specifies:
for capture - Photo Mode and Lights On During Frames.
for Transfer - Subsample value of 1 and Lossless transfer.

Note: You don’t really have to pass anything except the HHP_ IMAGE structure as long as you
want the imager config settings for capture and transfer. Also, no progress feedback will
be received.

HHP_IMAGE image; // Structure to hold captured image

HHP_IMAGE_TRANSFER imgTrans; // Image transfer options (override
imager config)

// Image capture options (override
imager config)

TCHAR tcErrMsg|[128 1; // Error message buffer
Result_t nResult = RESULT _ERR_INTIALIZE; // Return code

// Make sure to set imgAcqu structure size!
imgAcqu.dwStructSize = sizeof (HHP_IMAGE_ACQUISITION) ;

// Set the mask to activate captureMode and illuminatCycle (lights).
ImgAcqu.dwMask = (ILLUMINATION_DUTY_CYCLE_MASK | IMAGE_CAPTURE_MODE_MASK) ;

// Set values
ImgAcqu.captureMode = HHP_AUTOEXPOSURE_PHOTO;
ImgAcqu. IlluminatCycle = HHP_DUTY_CYCLE_ON;

// Make sure to set imgTrans structure size!
imgTrans.dwStructSize = sizeof (HHP_IMAGE_TRANSFER) ;

// Set the subsample and compression masks.
ImgTrans.dwMask = (SUBSAMPLE_VALUE_MASK | COMPRESSION_MODE_MASK) ;

// Set values
imgTrans.dwSubSample = 1;
imgTrans. compressionMode = COMPRESSION_LOSSLESS;

// Set the HHP_IMAGE structure size and allocate a buffer for the data, set the buffer
size and how you want to receive the data in the buffer.

Image.dwStructSize = sizeof (HHP_IMAGE);

Image.puchBuffer = new BYTE[324000 1]; // Allocate a buffer big enough to hold
640x480x8 plus header (if BMP)

Image.nBufferSize = 324000; // SDK wants to know how big the buffer
so no overflow.

Image.fileFormat = FF_RAW_GRAY; // 8 bit raw data.

// Call the SDK function to capture an image setting the bWait parameter to TRUE for
blocking/synchronous behavior.

if ((nResult = hhpAcquireImage(&image, &imgTrans, &imgAcqu,TRUE) == RESULT_SUCCESS)
{

// Display the image. NOTE: you could specify FF_BMP_GRAY. The data would come as
a BMP file.

else

hhpGetErrorMessage(nResult, tcErrMsg);
_tprintf(_T(“Image Capture Failed: %s\n”),tcErrMsg);

Download from Www.Somanuals.com. All Manuals Search And Download.

}
// Remember to delete your buffer.
delete [] image.puchBuffer;

Sample 8 - An asynchronous image capture using Windows Messaging

Note: You must hook the message WM_HHP_PROGRESS_HWND_MSG in your message loop to receive a barcode event
notification. Here, assume the message is hooked to call OnEventMsg.

// Capture image specifies:
for capture - none (use imager config settings)
for transfer - subsample value of 2 and JPEG transfer, progress notification

HHP_IMAGE_TRANSFER imgTrans; // Image transfer options (override
imager config)

TCHAR tcErrMsg[128 1; // Error message buffer.

Result_t nResult = RESULT_ERR_INTIALIZE; // Return code.

extern DWORD g_dwPercentComplete = NULL; // Percent complete updated by SDK.

// Make sure to set imgTrans structure size!
imgTrans.dwStructSize = sizeof (HHP_IMAGE_TRANSFER) ;

// Set the subsample, compression, and, since you’re specifying lossy compression (JPEG),
add the compression factor masks. You are also asking to receive both a Windows message
with progress information, as well as having the SDK update a DWORD with the percentage
of transfer completion. For the latter, it is important the DWORD not lose scope or be
deleted before the asynchronous call completes. You might have a thread or timer that

looks at this value periodically before altering the user.

ImgTrans.dwMask =(SUBSAMPLE_VALUE_MASK | COMPRESSION_MODE_MASK | COMPRESSION_FACTOR_MASK
| TRANSFER_UPDATE_HWND | TRANSFER_UPDATE_DWORD) ;

// Set values

imgTrans.dwSubSample = 2; // Every other pixel and every other
row.

imgTrans.compressionMode = COMPRESSION_LOSSY; // Image compression lossy which is
mode 1 JPEG lossy.

imgTrans.compressionFactor = 95; // Image compression factor (image
quality) of 95%.

ImgTrans. hTransferNotifyHwnd = GetSafeHwnd() ; // Set this to the window handle you

wish to receive the progress message.

imgTrans.dwPercentComplete = &g_dwPercentComplete; //Tell SDK to update this DWORD as
data is received.

// Call the SDK function to capture an image setting the bWait parameter to FALSE for
asynchronous behavior.

if ((nResult = hhpAcquireImage(NULL, &imgTrans,NULL,FALSE) == RESULT_SUCCESS)
{

// Display the image. NOTE: You could specify FF_BMP_GRAY. The data would come as
a BMP file.

}
else
{
hhpGetErrorMessage(nResult,tcErrMsg);
_tprintf(_T(“Image Capture Failed: %s\n”),tcErrMsg);

// Message Handler for transfer progress message

LRESULT OnProgressMsg(WPARAM wParam, LPARAM lParam)

{
DWORDdwBytesSoFar = wParam;// Number of bytes receive to this point.
DWORDdAwBytesToRead = lParam;// Total number of bytes expected.

Download from Www.Somanuals.com. All Manuals Search And Download.

return(0);

// Message Handler for image acquisition ended function (can be result of a failure as
well)
LRESULT OnEventMsg(WPARAM wParam, LPARAM lParam)

{

hhpEventTye_t eventType = (hhpEventType_t)wParam;// Event type

DWORD dwBytes = lParam; // Number of bytes in barcode. You
don’t actually use it here.

HHP_IMAGE Image; // Returned image structure.

TCHAR tcErrMsg[128 1; // Error message buffer

Result_t nResult = RESULT_ ERR_INTIALIZE; // Return code

// Verify the event type is barcode
if(eventType == HHP_IMAGE_EVENT)

{

}

// Set the HHP_IMAGE structure size and allocate a buffer for the data, set the
buffer size and how we want to receive the data in the buffer.

Image.dwStructSize = sizeof (HHP_IMAGE);

Image.puchBuffer = new BYTE[324000 1; // Allocate a buffer big enough to
hold 640x480x8 plus header (if BMP)

Image.nBufferSize = 324000; // SDK wants to know how big the
buffer is so there’s no overflow

Image.fileFormat = FF_BMP_GRAY; // 8 bit bmp file format data

if((nResult = hhpGetAsyncResult(&eventType, &Image)) == RESULT_ SUCCESS)

{

// save image data to a bmp file and/or display it
}
else
{
hhpGetErrorMessage(nResult, tcErrMsg);
_tprintf(_T(“Capture Image Failed: %s\n”), tcErrMsg);

// Remember to delete your buffer
delete [] image.puchBuffer;

return(0);

Download from Www.Somanuals.com. All Manuals Search And Download.

Download from Www.Somanuals.com. All Manuals Search And Download.

/

Customer Support

Product Service and Repair

Honeywell International Inc. provides service for all its products through service centers throughout the
world. To obtain warranty or non-warranty service, contact the appropriate location below to obtain a
Return Material Authorization number (RMA #) before returning the product.

North America

Telephone: (800) 782-4263
E-mail: hsmnaservice @hhoneywell.com

Latin America

Telephone: (803) 835-8000
Telephone: (800) 782-4263

Fax: (239) 263-9689

E-mail: laservice @ honeywell.com

Brazil

Telephone: +55 (11) 5185-8222
Fax: +55 (11) 5185-8225
E-mail: brservice @ honeywell.com

Mexico

Telephone: 01-800-HONEYWELL (01-800-466-3993)
Fax: +52 (55) 5531-3672
E-mail: mxservice @ honeywell.com

Europe, Middle East, and Africa

Telephone: +31 (0) 40 2901 633
Fax: +31 (0) 40 2901 631
E-mail: euroservice @ honeywell.com

Hong Kong

Telephone: +852-29536436
Fax: +852-2511-3557
E-mail: apservice @ honeywell.com

Singapore

Telephone: +65-6842-7155
Fax: +65-6842-7166
E-mail: apservice @ honeywell.com

China

Telephone: +86 800 828 2803
Fax: +86-512-6762-2560

E-mail: apservice @hhoneywell.com
Japan

Telephone: +81-3-6730-7344

Fax: +81-3-6730-7222
E-mail: apservice @honeywell.com

Online Product Service and Repair Assistance

You can also access product service and repair assistance online at www.honeywellaidc.com.

Download from Www.Somanuals.com. All Manuals Search And Download.

http://www.honeywellaidc.com

Technical Assistance

If you need assistance installing or troubleshooting your device, please call your distributor or the near-
est technical support office:

North America/Canada

Telephone: (800) 782-4263
E-mail: hsmnasupport@honeywell.com

Latin America

Telephone: (803) 835-8000
Telephone: (800) 782-4263
E-mail: hsmlasupport@honeywell.com

Brazil

Telephone: +55 (11) 5185-8222
Fax: +55 (11) 5185-8225
E-mail: brsuporte @ honeywell.com

Mexico

Telephone: 01-800-HONEYWELL (01-800-466-3993)
E-mail: soporte.hsm@honeywell.com

Europe, Middle East, and Africa

Telephone: +31 (0) 40 7999 393
Fax: +31 (0) 40 2425 672
E-mail: hsmeurosupport@honeywell.com

Hong Kong

Telephone: +852-29536436
Fax: +852-2511-3557
E-mail: aptechsupport@honeywell.com

Singapore

Telephone: +65-6842-7155
Fax: +65-6842-7166
E-mail: aptechsupport@honeywell.com

China

Telephone: +86 800 828 2803

Fax: +86-512-6762-2560

E-mail: aptechsupport@honeywell.com
Japan

Telephone: +81-3-6730-7344

Fax: +81-3-6730-7222
E-mail: aptechsupport@honeywell.com

Online Technical Assistance

You can also access technical assistance online at www.honeywellaidc.com.

Download from Www.Somanuals.com. All Manuals Search And Download.

http://www.honeywellaidc.com

Download from Www.Somanuals.com. All Manuals Search And Download.

Download from Www.Somanuals.com. All Manuals Search And Download.

Download from Www.Somanuals.com. All Manuals Search And Download.

Honeywell Scanning & Mobility
9680 Old Bailes Road
Fort Mill, SC 29707

www.honeywellaidc.com

5X10-80SDK-UG Rev D
411

Download from Www.Somanuals.com. All Manuals Search And Download.

http://www.honeywellaidc.com

Free Manuals Download Website
http://myh66.com
http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	5X80 Series User's Guide

	Introduction
	Features of the 5X00 Series
	Target Operating Systems for the 5X00 Series
	Interface Diagram
	5X00 Series Library Files
	5X00 Series API Library Summary
	Data Types, Structures, and Enumerated Types

	API Function Descriptions
	hhpAcquireImage
	hhpAcquireIntelligentImage
	hhpCancelIo
	hhpCaptureBarcode
	hhpCaptureRawBarcode
	hhpConnect
	hhpDisconnect
	hhpEnableDisableSymbology
	hhpEngineConnected
	hhpGetAsyncResult
	hhpGetErrorMessage
	hhpGetLastImage
	hhpNamedConnect
	hhpRawAcquireIntelligentImage
	hhpReadConfigItem
	hhpReadConfigStream
	hhpReadEngineInfo
	hhpReadImagerCapabilities
	hhpReadSymbologyConfig
	hhpReadSymbologyRangeMaxMin
	hhpSendActionCommand
	hhpSendMessage
	hhpSetAsyncMethods
	hhpSetBarcodeDataCodePage
	hhpSetConfigItemToDefaults
	hhpSetHardwareLineDllFileName
	hhpSetSymbologyDefaults
	hhpUpgradeFirmware
	hhpWriteConfigItem
	hhpWriteConfigStream
	hhpWriteSymbologyConfig
	Symbology Identifiers

	Enumerated Types and Definitions
	Error Codes (Continued)
	Setup Type Enumerated Type
	Symbology ID Enumeration (Continued)
	Supported OCR Fonts
	Image Formats (Continued)
	Compression Mode Formats
	Capture Illumination Duty Cycle
	Auto Exposure Type
	Gain Values Enum
	Frame Rates Enum
	Beeper Volume Enum
	Decoder Mode Enum
	System (MPU) Clock Speeds
	Configuration Structure Item Enum for hhpReadConfigItem() and hhpWriteConfigItem()
	Trigger Modes Enum
	Sequence Mode
	Serial Port Baud Rates
	Baud Rates that Require USB Serial or SIO950 Compatible Serial Port Driver
	Serial Data Bits
	Parity
	Stop Bits
	Connection Types
	Decoder Symbology Support
	HHP Action Commands
	On/Off Enum
	Beep Execute Enum
	Imager Type Enum
	Illumination Color Enum (5X10/5X80 engines only)

	Structures and Mask Definitions
	Symbology Structures and Defines
	Imaging Structures and Defines
	Other Imager Configuration Structures and Defines

	OEM-Configurable SDK Functionality
	OEM Supplied DLL
	ConfigureCommPort
	ImagerPoweredDown
	ModifyCommPortDCB
	SetCommDriverHandle
	SetHardwareTrigger
	WakeUpImager

	Registry Entries
	Baud Rate
	ForceHmodem

	Program Samples
	Configuration Management
	Barcode Capture
	Image Capture

	Customer Support
	Product Service and Repair
	Online Product Service and Repair Assistance

	Technical Assistance
	Online Technical Assistance

